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Problem Space

But these steps can be made smoother if data scientists could visualize the data at regular intervals since 
it helps to validate the correctness of past steps. 

Data science is an iterative process that involves 
several steps.

The three steps highlighted involve 
modifying/manipulating data i.e mostly contained 
in data frames such as pandas.

Problem?



Potential Issues?
● Cumbersome Boilerplate code: 

○ High cognitive overhead in writing “glue code” i.e. transitioning from code for visualization 
to code for dataframes and vice versa

○ So users visualize only in the last stages of their workflow

● Challenges in determining next steps:
○ Millions of records with hundreds of attributes! 
○ Which visualization will help among all combinations?

‘n’ data processing 
operations (ex: fix 
shape of df, …)

visualization specific 
ops (ex: set axes in 
matplotlib, …)

Visualize data!



Solution? 
LUX!

● Lux is an “always on” framework that provides visualizations for dataframe workflows. “Always 
On” signifies that users can demand recommended visualizations at any point in the life cycle 
of their data analysis. This lowers the barrier for visualizing dataframes.

● Everytime a user prints their dataframe (other times as well - by directly calling Vis), Lux 
recommends visualizations to represent useful patterns and trends in data. Additionally, users 
can also specify which attributes and values they would prefer to see trends for in the 
recommended visualizations.

● Integrates with existing dataframe workflows (pandas with Jupyter is widely used)



Ideas leading up to Lux
1. Visualization Recommendation (VisRec)

○ What visualizations should be recommended?
○ How to select attributes for these recommendations?
○ Which slices of data will be most useful for a data scientist?

2. Visualization Specification (VisSpec)
○ How to generate cold, hard code (what happens at the low level) for the visualizations?
○ Two types of  visualization libraries:

i. Imperative: user specified low level details like axes and labels
ii. Declarative: uses smart defaults to synthesize code

Lux uses ideas from both to generate visualizations!



Lux in Action
1. Always On

Negative correlation 

between life exp. And

inequality



Lux in Action
2. Specifying Intent 

Basic

Based on values of 
another attribute

G10 
industrialized 
countries are at 
the top left!



Lux in Action
3. Integrating with cleaning and transformation 

● Import csv that contains “stringency level”. High means that countries strictly enforced policies 
to combat covid-19 like social distancing. Low means lax policies.

Lux handling
merged data



Lux in Action
● Lux recommends a visualization based on the “stringency level” and we see that countries with 

a high stringency level are at the top left.
● Well developed countries with better health infrastructure has good responses to covid-19

But what about these? These 
seem to be interesting points!



Lux in Action
● Countries praised for their early response to covid-19 despite having limited resources!



Interacting with Dataframes

● Users need to 
explicitly write 
code to generate 
visualizations

● Users can specify 
intent to generate 
visualization (or 
intent can also be 
system generated)

1. Visualizations : The specific representation created by applying intent to a dataframe. A collection of 
visualizations -> VisList

2. Action : An ranked collection of visualizations. Like the set of visualizations based on correlation
3. Dashboard : Collection of all actions



Intent Grammar
● Intent can be specified to have multiple clauses

● Each clause can specify Axis (ex: “Inequality”) or can specify a Filter (ex: AvrgLifeExpectancy > 50)
● Properties for each of the attributes like the channel, bin size etc can also be set



Intent Grammar

● A Filter can also specify multiple attributes (ex: AvrgLifeExpectancy > 50 and Day=2020-03-11)

● The ? is a wildcard value with an option of defining a subset of attributes (else it considers all 
attributes other than those specified)



Specifying Intent
● Using filters: The visualization only contains points where department is sales

axis = "Age"

filter = "Department=Sales"

df.intent = [axis, filter]

● Constructing visualizations directly via Intent i.e immediately applying the intent

axis1 = lux.Clause(attribute="Age")

axis2 = lux.Clause(attribute="Education")

Vis([axis1,axis2],df)



Specifying Intent
● By specifying optional properties for axis like aggregation methods

axis1 = lux.Clause("MonthlyIncome", aggregation=numpy.var)

axis2 = "Attrition"

Vis([axis1,axis2],df)

● Specify multiple attributes to be plotted against the same attribute on one axis (say on the x 
axis)

rates = ["HourlyRate","DailyRate","MonthlyRate"]

VisList(["EducationField",rates],df)



Specifying Intent
● Browse through relationships between any two quantitative columns

any = lux.Clause("?",data_type = "quantitative")

VisList([any, any],df)

● Examine distributions across an attribute

VisList(["Age", "Country=?"],df)



DataFrame Recommendation: What is new?
Structured based recommendation

● Dataframe “structure” reveals strong signals for what the users 
subsequently choose to visualize. 

○ eg., dataframe index created using join or pivot operation 

History-based recommendations

● Leverage the history of operations user has applied on the dataframe
○ eg., keep track of the aggregate operations to feed into structured based 

recommendation



Lux System Overview

Client-Server 
model



Lux System Overview

● Unique 
values

● Cardinality
● Min/max



Lux System Overview

● Lazy Computation
● Caching & Reuse



Lux System Overview

● Approximate Query Processing
● Top-k ranking



Lux System Overview

● Asynchronous actions 
scheduling



Performance Evaluation wflow - lazy evaluation, caching
prune - AQP
all-opt - wflow + prune + async

Airbnb: 12 cols
Communities: 128 cols
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Performance Evaluation

< 2s
< 21s

< 1.5s

wflow - lazy evaluation, caching
prune - AQP
all-opt - wflow + prune + async

Airbnb: 12 cols
Communities: 128 cols

Overhead Cost 



Performance Evaluation

a) All the optimizations 
contribute to benefits because 
table has a lot of rows and fewer 
columns.

wflow - lazy evaluation, caching
prune - AQP
all-opt - wflow + prune + async

Airbnb: 12 cols
Communities: 128 cols

b) Async contribute to maximum 
benefits: Some actions like 
correlation on wide table are 
expensive.

a

b



Case Study
Feedback on  dataframe visualizations:
● It really helps speed up my exploratory analysis. If not, it will take me forever to go 

through these many variables (wide table).
● Always keep Lux view and rarely toggle back to pandas unless they observe anomalous 

trends in the visualizations

Feedback on  intent language (learning curve):
● Used intent as a way of systematically exploring groups of variables they were interested in
● They were unaware that they could specify filter intent with wildcards.



Case Study - Conclusion
● Support all the pandas operations, therefore cleanly propagate metadata

○ dataframe <-> groupby <-> Series <-> Index
● Failproofing always-on dataframe display

○ Fall back to default pandas display if the dataframe is ill-formed (errors)
● Integration with Downstream Reports

○ Support options to export visualization created by Lux to user dashboards

Ease of initial installation and setup is a primary driver impacting the adoption



Conclusion



Extra Images
Distribution:

Occurrence:



Extra Images
Filter:

Generalize:



Lux’s recommendations 
How does Lux determine the interestingness of plots? 

bar/line chart
histogram
scatterplot 



Temporal recommendation 



Row groups (Dataframe index)
All possible visualizations generated by groups of row-wise values



Column groups (Dataframe index)
All possible visualizations generated by groups of column-wise values



Lux
Reviewer - Bojun Yang



Summary of Contributions

● Aims to improve visualizations in dataframe workflows by providing a 
dashboard of recommended visualizations that is driven by user- or 
system-specified intent

● Intent Language formalization
○ Lightweight, succinct, easy to learn
○ Users can indicate which parts of the dataframe they are interested in
○ System-specified: visual display will always recommend something even if no user-intent input

● Execution and Optimization
○ Identify common dataframe usage patterns and determining when and how to expire metadata 

and recs in a dataframe workflow



Strong Points

S1: Intent language is versatile as a mechanism to steer recommendation and directly 
creating multiple visualizations on top of dataframes.

S2: Simple and convenient to learn intent language. The whole experience using Lux 
saves users time.

S3: Supports pandas’ 600+ operators by wrapping around pandas dataframe

S4: Combines existing methods like AQP, early pruning, caching, async computation to 
add no more than 2 seconds of overhead when dataframe contains less than 1M rows

S5: 62K downloads, praise from users. Open Source community and industry practitioner 
adoption. Field study results users say helps speed up exploratory data analysis iwthout 
need for code. 



Weak Points

O1: Most techniques are pre-existing. No improvements on any prior techniques 
or implementations.

O2: Mentioned that in user testing, users still waited towards end of workflow to 
use Lux because of the latency that running Lux introduces. Also Lus contains little 
support for visualizing dirty or ill-formatted data

O3: Scalability/interactivity on 10M data case incurred overhead of 21 seconds

O4: Users were unaware of wildcard intent specification



Weak Accept
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Summary

- Visualizing dataframes is a common, important, 
yet extremely manual and error-prone process 
within the fluid, iterative process of exploratory 

data analysis (EDA) => Viz Recommendation 
Engine

- Lux is built on top of pandas, augmented with 

intent language and recommendation engine
- Adds no more than 2 seconds of overhead for 

most datasets, well-received by early adopters of 

the system (3100+ stars on Github, 70/100 on the 
System Usability Scale among interviewees)



Why we should adopt Lux

- Reduces friction for our data scientists to 
generate visualization from dataframes => 
Increased productivity for data scientists

- Fully compatible with pandas

- Low installation & computational overhead, 
considering the benefits of recommendations



Why we shouldn’t adopt Lux

- Not robust enough to handle “dirty” data

- Intent language not flexible enough, need 
ability to specify visualization technique



Should we adopt Lux?

YES!



Lux: Always-on Visualization 
Recommendations for Exploratory Dataframe 

Workflows

Archaeologist



Connected Papers

Data2Viz
VisGNN
VizML
…

Using ML to Recommend 
Visualization



Brief Overview of Recommendation Papers
VizML 
● Identify design choices made by analysts while creating visualizations, such as 

selecting a visualization type and choosing to encode a column along the X- or Y-axis. 
● Train neural networks to predict these design choices using one million 

dataset-visualization pairs collected from a popular online visualization platform. 

Data2Viz
● Formulate visualization generation as a language translation problem, where data 

specifications are mapped to visualization specifications in a declarative language 
(Vega-Lite). 

● Train a multilayered attention-based encoder–decoder network with long short-term 
memory (LSTM) units on a corpus of visualization specifications. 



Another paper from the same author
Deconstructing Categorization in Visualization Recommendation: A Taxonomy and Comparative Study

Operational category: describes analytical actions that navigate users through the visualization space via 
operations such as add, remove, and swap. 

Characteristic category: describes actions that reveal certain characteristic patterns in the data, such as 
skewness and correlation



Overlap with Commercial Tools

Interactive visualization tools
Create fine-tuned dashboard to present 
to stakeholders

Tool for adhoc exploration
Not optimized of dashboard
Instead get to dashboards quickly



Future Directions

ZenVizage (Extend the capabilities of Lux using ShapeSearch)

https://dl.acm.org/doi/pdf/10.1145/3535337



Discussion
What made Lux so popular in the open-source community?

pip install lux-api
viz with one line of code 
work with pandas 
diverse types of recommendations 
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