
CS 8803-MDS
Human-in-the-loop Data
Analytics
Lecture 21

11/07/22

1

Today’s class
SeeDB: efficient data-driven visualization recommendations to support
visual analytics

Archaeologist: Cangdi

Lux: Always-on Visualization Recommendations for Exploratory
Dataframe Workflows

Authors: Sahil, Gaurav
Reviewer: Bojun
Archaeologist: Gaurav
Practioner: Cuong

Lux
Always-on Visualization Recommendations

for Exploratory Dataframe Workflows

Sahil Ashish Ranadive, Gaurav Tarlok Kakkar

Problem Space

But these steps can be made smoother if data scientists could visualize the data at regular intervals since
it helps to validate the correctness of past steps.

Data science is an iterative process that involves
several steps.

The three steps highlighted involve
modifying/manipulating data i.e mostly contained
in data frames such as pandas.

Problem?

Potential Issues?
● Cumbersome Boilerplate code:

○ High cognitive overhead in writing “glue code” i.e. transitioning from code for visualization
to code for dataframes and vice versa

○ So users visualize only in the last stages of their workflow

● Challenges in determining next steps:
○ Millions of records with hundreds of attributes!
○ Which visualization will help among all combinations?

‘n’ data processing
operations (ex: fix
shape of df, …)

visualization specific
ops (ex: set axes in
matplotlib, …)

Visualize data!

Solution?
LUX!

● Lux is an “always on” framework that provides visualizations for dataframe workflows. “Always
On” signifies that users can demand recommended visualizations at any point in the life cycle
of their data analysis. This lowers the barrier for visualizing dataframes.

● Everytime a user prints their dataframe (other times as well - by directly calling Vis), Lux
recommends visualizations to represent useful patterns and trends in data. Additionally, users
can also specify which attributes and values they would prefer to see trends for in the
recommended visualizations.

● Integrates with existing dataframe workflows (pandas with Jupyter is widely used)

Ideas leading up to Lux
1. Visualization Recommendation (VisRec)

○ What visualizations should be recommended?
○ How to select attributes for these recommendations?
○ Which slices of data will be most useful for a data scientist?

2. Visualization Specification (VisSpec)
○ How to generate cold, hard code (what happens at the low level) for the visualizations?
○ Two types of visualization libraries:

i. Imperative: user specified low level details like axes and labels
ii. Declarative: uses smart defaults to synthesize code

Lux uses ideas from both to generate visualizations!

Lux in Action
1. Always On

Negative correlation

between life exp. And

inequality

Lux in Action
2. Specifying Intent

Basic

Based on values of
another attribute

G10
industrialized
countries are at
the top left!

Lux in Action
3. Integrating with cleaning and transformation

● Import csv that contains “stringency level”. High means that countries strictly enforced policies
to combat covid-19 like social distancing. Low means lax policies.

Lux handling
merged data

Lux in Action
● Lux recommends a visualization based on the “stringency level” and we see that countries with

a high stringency level are at the top left.
● Well developed countries with better health infrastructure has good responses to covid-19

But what about these? These
seem to be interesting points!

Lux in Action
● Countries praised for their early response to covid-19 despite having limited resources!

Interacting with Dataframes

● Users need to
explicitly write
code to generate
visualizations

● Users can specify
intent to generate
visualization (or
intent can also be
system generated)

1. Visualizations : The specific representation created by applying intent to a dataframe. A collection of
visualizations -> VisList

2. Action : An ranked collection of visualizations. Like the set of visualizations based on correlation
3. Dashboard : Collection of all actions

Intent Grammar
● Intent can be specified to have multiple clauses

● Each clause can specify Axis (ex: “Inequality”) or can specify a Filter (ex: AvrgLifeExpectancy > 50)
● Properties for each of the attributes like the channel, bin size etc can also be set

Intent Grammar

● A Filter can also specify multiple attributes (ex: AvrgLifeExpectancy > 50 and Day=2020-03-11)

● The ? is a wildcard value with an option of defining a subset of attributes (else it considers all
attributes other than those specified)

Specifying Intent
● Using filters: The visualization only contains points where department is sales

axis = "Age"

filter = "Department=Sales"

df.intent = [axis, filter]

● Constructing visualizations directly via Intent i.e immediately applying the intent

axis1 = lux.Clause(attribute="Age")

axis2 = lux.Clause(attribute="Education")

Vis([axis1,axis2],df)

Specifying Intent
● By specifying optional properties for axis like aggregation methods

axis1 = lux.Clause("MonthlyIncome", aggregation=numpy.var)

axis2 = "Attrition"

Vis([axis1,axis2],df)

● Specify multiple attributes to be plotted against the same attribute on one axis (say on the x
axis)

rates = ["HourlyRate","DailyRate","MonthlyRate"]

VisList(["EducationField",rates],df)

Specifying Intent
● Browse through relationships between any two quantitative columns

any = lux.Clause("?",data_type = "quantitative")

VisList([any, any],df)

● Examine distributions across an attribute

VisList(["Age", "Country=?"],df)

DataFrame Recommendation: What is new?
Structured based recommendation

● Dataframe “structure” reveals strong signals for what the users
subsequently choose to visualize.

○ eg., dataframe index created using join or pivot operation

History-based recommendations

● Leverage the history of operations user has applied on the dataframe
○ eg., keep track of the aggregate operations to feed into structured based

recommendation

Lux System Overview

Client-Server
model

Lux System Overview

● Unique
values

● Cardinality
● Min/max

Lux System Overview

● Lazy Computation
● Caching & Reuse

Lux System Overview

● Approximate Query Processing
● Top-k ranking

Lux System Overview

● Asynchronous actions
scheduling

Performance Evaluation wflow - lazy evaluation, caching
prune - AQP
all-opt - wflow + prune + async

Airbnb: 12 cols
Communities: 128 cols

Performance Evaluation wflow - lazy evaluation, caching
prune - AQP
all-opt - wflow + prune + async

Airbnb: 12 cols
Communities: 128 cols

Performance Evaluation

< 2s
< 21s

< 1.5s

wflow - lazy evaluation, caching
prune - AQP
all-opt - wflow + prune + async

Airbnb: 12 cols
Communities: 128 cols

Overhead Cost

Performance Evaluation

a) All the optimizations
contribute to benefits because
table has a lot of rows and fewer
columns.

wflow - lazy evaluation, caching
prune - AQP
all-opt - wflow + prune + async

Airbnb: 12 cols
Communities: 128 cols

b) Async contribute to maximum
benefits: Some actions like
correlation on wide table are
expensive.

a

b

Case Study
Feedback on dataframe visualizations:
● It really helps speed up my exploratory analysis. If not, it will take me forever to go

through these many variables (wide table).
● Always keep Lux view and rarely toggle back to pandas unless they observe anomalous

trends in the visualizations

Feedback on intent language (learning curve):
● Used intent as a way of systematically exploring groups of variables they were interested in
● They were unaware that they could specify filter intent with wildcards.

Case Study - Conclusion
● Support all the pandas operations, therefore cleanly propagate metadata

○ dataframe <-> groupby <-> Series <-> Index
● Failproofing always-on dataframe display

○ Fall back to default pandas display if the dataframe is ill-formed (errors)
● Integration with Downstream Reports

○ Support options to export visualization created by Lux to user dashboards

Ease of initial installation and setup is a primary driver impacting the adoption

Conclusion

Extra Images
Distribution:

Occurrence:

Extra Images
Filter:

Generalize:

Lux’s recommendations
How does Lux determine the interestingness of plots?

bar/line chart
histogram
scatterplot

Temporal recommendation

Row groups (Dataframe index)
All possible visualizations generated by groups of row-wise values

Column groups (Dataframe index)
All possible visualizations generated by groups of column-wise values

Lux
Reviewer - Bojun Yang

Summary of Contributions

● Aims to improve visualizations in dataframe workflows by providing a
dashboard of recommended visualizations that is driven by user- or
system-specified intent

● Intent Language formalization
○ Lightweight, succinct, easy to learn
○ Users can indicate which parts of the dataframe they are interested in
○ System-specified: visual display will always recommend something even if no user-intent input

● Execution and Optimization
○ Identify common dataframe usage patterns and determining when and how to expire metadata

and recs in a dataframe workflow

Strong Points

S1: Intent language is versatile as a mechanism to steer recommendation and directly
creating multiple visualizations on top of dataframes.

S2: Simple and convenient to learn intent language. The whole experience using Lux
saves users time.

S3: Supports pandas’ 600+ operators by wrapping around pandas dataframe

S4: Combines existing methods like AQP, early pruning, caching, async computation to
add no more than 2 seconds of overhead when dataframe contains less than 1M rows

S5: 62K downloads, praise from users. Open Source community and industry practitioner
adoption. Field study results users say helps speed up exploratory data analysis iwthout
need for code.

Weak Points

O1: Most techniques are pre-existing. No improvements on any prior techniques
or implementations.

O2: Mentioned that in user testing, users still waited towards end of workflow to
use Lux because of the latency that running Lux introduces. Also Lus contains little
support for visualizing dirty or ill-formatted data

O3: Scalability/interactivity on 10M data case incurred overhead of 21 seconds

O4: Users were unaware of wildcard intent specification

Weak Accept

Lux: Always-on Visualization Recommendations for
Exploratory Dataframe Workflows

Practitioner Presentation by: Johnny Nguyen

Summary

- Visualizing dataframes is a common, important,
yet extremely manual and error-prone process
within the fluid, iterative process of exploratory

data analysis (EDA) => Viz Recommendation
Engine

- Lux is built on top of pandas, augmented with

intent language and recommendation engine
- Adds no more than 2 seconds of overhead for

most datasets, well-received by early adopters of

the system (3100+ stars on Github, 70/100 on the
System Usability Scale among interviewees)

Why we should adopt Lux

- Reduces friction for our data scientists to
generate visualization from dataframes =>
Increased productivity for data scientists

- Fully compatible with pandas

- Low installation & computational overhead,
considering the benefits of recommendations

Why we shouldn’t adopt Lux

- Not robust enough to handle “dirty” data

- Intent language not flexible enough, need
ability to specify visualization technique

Should we adopt Lux?

YES!

Lux: Always-on Visualization
Recommendations for Exploratory Dataframe

Workflows

Archaeologist

Connected Papers

Data2Viz
VisGNN
VizML
…

Using ML to Recommend
Visualization

Brief Overview of Recommendation Papers
VizML
● Identify design choices made by analysts while creating visualizations, such as

selecting a visualization type and choosing to encode a column along the X- or Y-axis.
● Train neural networks to predict these design choices using one million

dataset-visualization pairs collected from a popular online visualization platform.

Data2Viz
● Formulate visualization generation as a language translation problem, where data

specifications are mapped to visualization specifications in a declarative language
(Vega-Lite).

● Train a multilayered attention-based encoder–decoder network with long short-term
memory (LSTM) units on a corpus of visualization specifications.

Another paper from the same author
Deconstructing Categorization in Visualization Recommendation: A Taxonomy and Comparative Study

Operational category: describes analytical actions that navigate users through the visualization space via
operations such as add, remove, and swap.

Characteristic category: describes actions that reveal certain characteristic patterns in the data, such as
skewness and correlation

Overlap with Commercial Tools

Interactive visualization tools
Create fine-tuned dashboard to present
to stakeholders

Tool for adhoc exploration
Not optimized of dashboard
Instead get to dashboards quickly

Future Directions

ZenVizage (Extend the capabilities of Lux using ShapeSearch)

https://dl.acm.org/doi/pdf/10.1145/3535337

Discussion
What made Lux so popular in the open-source community?

pip install lux-api
viz with one line of code
work with pandas
diverse types of recommendations

Next class
Investigating the Effect of the Multiple Comparisons
Problem in Visual Analysis

Authors: Tanya, Yanhao
Reviewer: Siddhi, Harshal
Archaeologist: Akshay
Practioner: Cangdi

