
CS 8803-MDS
Human-in-the-loop Data
Analytics
Lecture 20

11/02/22

1

Today’s class
SeeDB: efficient data-driven visualization recommendations
to support visual analytics

Authors: Ting

Reviewer: Shen En, Harshal

Archaeologist: Cangdi

Practioner: Ashmita

Recommendation systems

Recommendation systems
Content-based filtering: recommend items
that are similar to those user liked in the past

Image source: A new horizon for the recommendation: Integration of spatial dimensions to aid decision making

Recommendation systems
Content-based filtering: recommend items
that are similar to those user liked in the past

Collaborative filtering: recommend items that
similar users liked

Image source: A new horizon for the recommendation: Integration of spatial dimensions to aid decision making

Recommendation systems
Content-based filtering: recommend items
that are similar to those user liked in the past

Collaborative filtering: recommend items that
similar users liked

Knowledge-based filtering: recommend items
based on knowledge base

Image source: A new horizon for the recommendation: Integration of spatial dimensions to aid decision making

Recommendation systems
Content-based filtering: recommend items that are similar to those user
liked in the past

Collaborative filtering: recommend items that similar users liked

Knowledge-based filtering: recommend items based on knowledge base

Q: Can these techniques apply to viz recommendation systems?

Viz recommendation systems
Q: Can these techniques apply to viz recommendation systems?

Observations:
- common use case: new datasets analyzed by new users

- lack of historical ratings

- the set of ”items” is not fixed; depends on the the specific task

- false discoveries is a unique concern for viz recommendation systems

Today’s class
SeeDB: efficient data-driven visualization recommendations
to support visual analytics

Authors: Ting

Reviewer: Shen En, Harshal

Archaeologist: Cangdi

Practioner: Ashmita

SeeDB: Efficient Data-Driven Visualization Recommendations
to Support Visual Analytics
Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, Neoklis Polyzotis

Presenter: Ting Yu

Problem Motivation

Data visualization is often the first step in data analysis.

We use visualization to…

- get a feel for the data,
- find anomalies and outliers,
- identify patterns that might merit further investigation

But identifying useful visualization is a non-trivial task, especially given higher
dimensional data.

An Motivation Example

How marital-status impacts socio-economic indicators like education and income?

One approach could be…

But this solution does not
scale well to higher
dimensional data.

2 challenges in selecting the most interesting visualizations

1. What visualization is worth recommending?

2. How do we make the recommendation in interactive speed?

“Deviation from reference” as an measure of interestingness

An engine that uses sharing computation and pruning
computation to speed up

Contributions

Metric: deviation from reference, as a measure of interestingness

System: an engine optimized with sharing computation and pruning computation

SeeDB can be deployed as a middleware layer for any SQL-compliant DBMS

Formulating the Recommendation Problem

Problem Formulation - Data

D, a database

Q, a generic select-project-join query (we assume that the analyst has indicated a
desire to explore a subset of data in a joined table from all possible schemas)

D_Q, the result of Q on D, essential a subset of D

D_R, a reference dataset, i.e. some D_Q, default D_R = D

Problem Formulation - Aggregate View

A, an attribute we want to groupby

M, the other attribute we want to aggregate

F, the aggregate function

V, the view defined by some (a, m, f), i.e.

An aggregate view is just an query!

Problem Formulation - Utility Function

We have two data, one data in interest and the other as a reference

D_Q, the result of Q on D

D_R, a reference dataset, default = D

By applying the same view V, i.e. (a, m, f)

Problem Formulation - Utility Function

To ensure all aggregate summaries have the same scale, we normalize each
aggregate summary into a probability distribution (i.e. the values of f (m) sum to 1).

Then we have two probability distributions to compare.

We then choose a distance measure, S, between probability distributions. S could
be KL-divergence, Euclidean Distance, etc. We use Earth Mover’s Distance by
default.

The reference distribution is not uniform!

Overall Problem Formulation

Given a user-specified query Q on a database D, a reference dataset DR, a utility
function U, and a positive integer k, find k aggregate views V ≡ (a, m, f) that have
the largest values of U (V) among all the views (a, m, f), while minimizing total
computation time.

Front-end

System Design for Interactivity

Basic execution without optimization

For each aggregate view, it generates a SQL query corresponding to the target and
reference view, and issues the two queries to the underlying DBMS.

There are in total 2 x A x M x F queries.

Sharing Computation

Sharing computation in our setting is a special case of the general problem of
multi-query optimization

1. Combine multiple aggregates
2. Combine multiple groupbys
3. Combine target and reference view query
4. Parallel query execution

Sharing Computation - Combine multiple aggregates

Given a groupby attribute a1,

Instead of (a1, m1, f1), (a1, m2, f2) ...(a1, mk, fk),

Do (a1, {m1, m2 . . . mk}, {f1 , f2 . . . fk}) in one query.

Sharing Computation - Combine multiple groupbys

We verify that grouping can benefit performance so long as memory utilization
for grouping stays under a threshold S.

OPTIMAL GROUPING PROBLEM: Given memory budget S and a set of dimension
attributes A = {a1 . . . an }, divide the dimension attributes in A into groups A1,...,Al
(where Ai ⊆ A and UAi = A) such that if a query Q groups the table by any Ai, the
memory utilization for Q does not exceed S.

Isomorphic to NP-Hard bin packing problem.

We use the standard first-fit algorithm to find the optimal grouping.

Sharing Computation - Combine target and reference

Sharing Computation - Parallel query execution

SeeDB executes multiple view queries in parallel as these queries can often share
buffer pool pages, reducing disk access times.

Pruning Computation

In practice, most visualizations are low-utility, meaning computing them wastes
computational resources.

The core idea is to use partial results for each view based on the data processed
so far to estimate utility and views with low utility are dropped.

V1,...Vn

pruned

V1,...Vn - pruned

Pruning Computation

2 strategies:

1. Confidence Interval-Based Pruning
2. Multi-Armed Bandit Pruning

Pruning Computation - Confidence-interval based pruning

During each phase, we keep an estimate of the mean utility for every aggregate
view Vi and a confidence interval (derived from Hoeffding-Serfling inequality).

At the end of a phase, if the upper bound of the utility of view Vi is less than the
lower bound of the utility of k or more views, then Vi is discarded.

If we select top-2 views, then V4
would be discarded

Pruning Computation - Multi-Armed Bandit Pruning

Multi-Armed Bandit strategy (MAB) is an online algorithm repeatedly chooses from
a set of alternatives (arms) over a sequence of trials to maximize reward.

U(V1) U(V2) U(V3) U(V4) U(V5)…

Ordered from highest mean utility to -> lowest mean utility

K = 3

 U(V1) - U(V4) U(V3) - U(V5)

If U(V1) - U(Vk+1) > U(Vk) - U(Vn), then V1 is accepted as part of top-k and no longer in the process.

Pruning Computation - Consistent Distance Functions

How do you guarantee the estimation selects the top-k?

We can show that, as we sample more and more, the estimated utility Uˆ can be
made to be arbitrarily close to U for all aggregate views. Essentially, this means that
a pruning algorithm that uses a sufficiently large sample will prune away low
utility views with high probability.

We find distance functions that have satisfy the above property as consistent
distance functions. Consistent distance functions allow pruning schemes to
gather increasingly better estimates of utility values over time (as long as the
samples are large enough).

System Evaluation

Testing Data

Evaluation Method

3 performance metrics:

1. Time taken to return the top-k visualizations.

For experiments involving pruning strategies, we also measure quality of results:

2. Accuracy
3. Utility distance

Since data layout to impact the efficacy of optimizations, we evaluate on both a
row-oriented database (denoted ROW) a column-oriented database (denoted COL).

The experiments use earth mover’s distance (EMD) as distance function .

Results Summary

1. 6–40X speedup from sharing
2. 5X speedup from pruning without loss of accuracy
3. Multiplicative gains
4. > 100X speedup overall
5. Gains improve on larger datasets

Baseline - 2 x (A x M x F)

Results - Latency

COMB: both sharing and pruning applied. COMB (COMB EARLY): return approximate results as soon as the top-k
visualizations have been identified.

Results obtained with confidence Interval (CI) pruning scheme and k=10.

Results - Sharing Computation - Multiple Aggregates

Overall, combining aggregates provides a 4X speedup for ROW and 3X for COL

Results - Sharing Computation - Multiple GroupBys

For ROW, once the memory budget
(proxied by the number of distinct
groups) exceeds 10000, latency
increases significantly. We see a similar
trend for COL, but with a memory
budget of 100.

Thus, we find empirically that memory
usage from grouping is, in fact, related
to latency and that optimal groupings
must respect the memory threshold.

n_dist: n distinct values

Results - Sharing Computation - Multiple GroupBys

Bin packing strategy (dashed line),
consistently keeps memory utilization
under the memory budget, compared
to simply setting a limit on the number
of group-bys in each query (solid line).

Results - Sharing Computation - Parallelism

Low levels of parallelism produce sizable
performance gains but high levels degrade
performance.

The optimal number of queries to run in parallel
is approximately 16 (equal to the number of
cores)

Results - Sharing Computation - Overall

Overall speedup of up to 40X for row stores, and 6X for column stores; column
stores are still faster than row stores.

Results - Pruning Accuracy

BANK dataset

Results - Pruning Accuracy

Results - Pruning latency improvement

User Study

User Study - Deviation Metric Validity

Ground Truth:

5 data analysis experts are presented with visualizations of the Census dataset and
they label them as either interesting or not interesting.

Results - Deviation Metric Validity

Conclusion: SeeDB
recommendations have high
quality and coverage

(yellow = popular, blue = not popular)
Might be a typo in the paper. Popular = interesting?

User Study - SeeDB vs Manual

16 participants with prior data analysis experience and visualization are asked to
bookmark interesting visualization given an analytic task

Manual

Results - User Study

All participants preferred SeeDB to Manual.

79% of participants found the recommendations “Helpful” or “Very Helpful”

79% of participants indicated that SeeDB visualizations showed unexpected trends

One participant noted that SeeDB was “. . . great tool for proposing a set of initial
queries for a dataset”

Results - User Study

Significant effect of tool on the number of bookmarks, F(1,1) = 18.609, p < 0.001

Significant effect of tool on bookmark rate, F(1,1) = 10.034, p < 0.01

No significant effect of dataset on number of bookmarks nor bookmark rate

Thank you!

SEEDB: Efficient Data-Driven
Visualization Recommendations to
Support Visual Analytics

Practitioner: Ashmita

Summary

• User inputs a query which indicates the subset of data of interest.

• SEEDB automatically identifies and highlights the most interesting views of the query results using
methods based on deviation.

• Optimizations to share computation and prune computation are implemented

• Middleware on top of any DB.

Integrating SeeDB

• Product - Interactive visualization tool like Tableau

• Implement SeeDB as it is advertised

• Middleware between the UI and the backend DB

• Technical Report contains more algorithmic details

https://people.eecs.berkeley.edu/~adityagp/seedb-tr.pdf

Architecture

Architecture

Exists in
our system

Implement

Should we integrate?

• Improve the recommendations provided by our system

• The results presented in the paper are compelling

• User study indicates that users will benefit from this type of visualization recommendation

• Not much increase in compute/memory because of the optimizations

• Negatives:
• Needs time and effort as it is not open sourced
• Doesn’t support all types of charts – only bar and line, but should be extendible to any type

Thank You!

SEEDB: Efficient Data-Driven Visualization
Recommendations to Support Visual
Analytics

Archaeologist: Cangdi Li
Nov 3

ConnectedPapers

•Prior work
• Although the range is shown as

2007-2015, but the papers that
have direct impact on this paper
is only since 2012, and most of
them are previous version of the
SeeDB series.

• The SeeDB series:
• SeeDB: visualizing database queries

efficiently Aditya G. Parameswaran, Neoklis Polyzotis, H.
Garcia-Molina 2013, VLDB 2013

• SEEDB: Automatically Generating Query
Visualizations Manasi Vartak, S. Madden, Aditya G.
Parameswaran, Neoklis Polyzotis 2014, Proc. VLDB Endow

• SeeDB: Efficient Data-Driven Visualization
Recommendations to Support Visual
Analytics Manasi Vartak, Sajjadur Rahman, S. Madden,
Aditya G. Parameswaran, Neoklis Polyzotis 2015, Proc.
VLDB Endow.

Growth of SeeDB
• SeeDB: visualizing database queries efficiently 2013

• A 4-page paper with 50 citations

• It propose a initial DBMS design that partially automates the task of finding the
visualizations for a query, and it also gives recommendation of potentially
“interesting” visualizations, with only Multi-Query Optimization (sharing).

• SeeDB: Automatically Generating Query Visualizations 2014

• A 4-page paper with 82 citations

• On top of the previous version, it proposes more optimization methods on
pruning, and designed the structure of the tool to frontend and backend.

• SeeDB: Efficient Data-Driven Visualization Recommendations to
Support Visual Analytics 2015

• Same optimizations, and it was proposed as a middleware layer that can run on
top of any DBMS. Completely implemented, evaluated with user study.

•Prior work
• Most of the impactful

previous works focus on:
• Automated visualization

reccomendation

• sampling algorithm
optimization.

• explain outlier

• Plenty of other papers that
focus on visualization
technique of multi-
dimensional data.

• Later work
• There’s 2 major later works

with big citation numbers:

• DeepEye: Towards Automatic
Data Visualization Yuyu Luo, et al
2018 IEEE

• Voyager: Exploratory Analysis
via Faceted Browsing of
Visualization
Recommendations Kanit
Wongsuphasawat etal 2016, IEEE

DeepEye: Towards Automatic Data
Visualization Yuyu Luo, et al 2018 IEEE
• DeepEye is a novel system for automatic data visualization that tackles three problems:
• (1) Visualization recognition: given a visualization, is it “good” or “bad”?
• (2) Visualization ranking: given two visualizations, which one is “better”?
• (3) Visualization selection: given a dataset, how to find top-k visualizations?

• DEEPEYE addresses
• (1) by training a binary classifier to decide whether a particular visualization is good or bad.
• (2) from two perspectives:

• (i) Machine learning: it uses a supervised learning-to-rank model to rank visualizations;
• (ii) Expert rules: it relies on experts’ knowledge to specify partial orders as rules.
• Moreover, a “boring” dataset may become interesting after data transformations

• (3) Extensive experiments verify the effectiveness of DEEPEYE.

Voyager: Exploratory Analysis via Faceted
Browsing of Visualization Recommendations
• This paper seeks to complement manual chart construction with interactive navigation of a gallery of

automatically-generated visualizations. It presents Voyager, a mixed-initiative system that supports faceted
browsing of recommended charts chosen according to statistical and perceptual measures.

SeeDB: Efficient Data-Driven Visualization
Recommendations to Support Visual Analytics

Peer Review

Shen En Chen

Summary of Contribution

● Built a recommendation system for top-k most interesting visualizations

● Leveraged data deviation as cue for “interestingness” and developed a utility metric to quantify it

● Used share computation across visualizations to avoid repeated scans on the same data

● Adopted pruning techniques to avoid computations on low-utility visualization

● Demonstrated the accuracy of utility estimation and speeds of recommendation on real and synthetic data.

● Conducted a user study to validates the usefulness of SeeDB in analytical workflows.

Strong Points

● Auto-Identification and Recommendation: Avoid human-in-the-loop trial-and-error process for finding interesting

visualizations.

● Highly Extensible: Supports any SQL-compliant database systems, different utility metrics, different distance functions

for the proposed deviation-based utility metrics.

● Interactive Speeds: Achieves 100x speedup overall.

● Theoretical Guarantees: Supports the design with strong/weak theoretical guarantees when possible.

● Ablation Study: Evaluations the speedups brought by different optimization components.

● Supported by User Study: Validates (1) the accuracy of the utility metric, (2) the capability to recommend interesting

visualizations, and (3) the speedup on visual analysis.

● Two Types of Accuracy: (1) Accuracy against true utility scores and (2) Accuracy against user-voted interestingness

● Detailed Controlled Settings and Analysis for User Study: Conducted user studies with detailed protocols (e.g., same

interface w/ vs w/o recommendation) and post-study analysis.

Opportunities for Improvement

● Better Prioritization and Summarization of Content: be more selective on the technical content presented and include

the uncovered content in the technical report.

● Clarity on FIgures: improve the clarity of the figures with more annotations.

● Larger Sample Size for User Study: carry out user study with a larger sample size and more balanced demographics.

● Incorporation of Other Optimization Techniques (future direction): improve interactivity further by employing other

techniques such as in-memory caching, sampling, and prefetching.

● Recommendations of Different Visualization (future direction): support non-bar chart visualizations.

ACCEPT

Review

Harshal Gajjar

8803-MDS Fall 22

Prof. Kexin Rong

• What is the “utility” function that makes a particular visualization
important/informative.

• Problems in naïve implementation to find top-k informative visualizations
which can make the interactive system unusable by increasing latency
beyond 100s.

• Optimizations in SeeDB server’s execution engine that reduces the
number of queries, and the number of complete-db scans by the DBMS;
this include sharing of data across queries and pruning of the number of
queries (by removing underwhelming visualisations (as defined by the
utility function))

• This is followed by benchmarking on 7 datasets and a user study on
another 3 datasets to find qualitative and quantitive proofs for the
usefulness of SeeDB.

“No existing system that we are aware of makes use of variation from a reference to recommend visualizations.”
∵ Novel idea

Execution engine which iterates over phases while pruning options between phases and sharing data within
phases.
∵ Generic idea and can be applied in several scenarios where there is an incoming stream of options and limited
storage space

We note that this is the first time that bandit strategies have been applied to the problem of identifying
interesting visualizations.
∵ Novel idea

The current system only works with bar charts; that limitation was not explicitly stated in the paper.

The definition of problem (Problem 2.1 in the paper) was a bit non-intuitive, it should be self-sufficient, but it
lacked definition of the terms 𝑎, 𝑚, 𝑓, and lacks reasoning for requiring 𝑄.

The authors do not explore any other solutions to Multi-Armed bandit problem / explore-exploit problem or
explain reasoning behind their algorithm

Discussion
How are recommendation criteria similar/different in visual
recommendation systems and traditional recommendation systems

Relevance

Novelty

Non-obviousness

Diversity

Coverage

Discussion
What are opportunities to speed up visualization recommendation
computations?

Offline
Online
Approximation

Next class
Lux: Always-on Visualization Recommendations for
Exploratory Dataframe Workflows

Authors: Sahil, Gaurav

Reviewer: Bojun

Archaeologist: Gaurav

Practioner: Cuong

