
CS 8803-MDS
Human-in-the-loop Data
Analytics
Lecture 17

10/24/22

1

Today’s class
Hypothesis testing
Slice Finder: Automated Data Slicing for Model Validation

Authors: Andrew

Reviewer: Shen En

Archaeologist: Qiandong

Practitioner: Bojun

Hypothesis testing
• If the system recommends a discovery to users, how do we know if

the event is ”significant”
• When users explore datasets for “interesting” events, they are

performing hypothesis tests without knowing it

Relevant papers:
MacroBase: Prioritizing Attention in Fast Data
Slice Finder: Automated Data Slicing for Model Validation
Investigating the Effect of the Multiple Comparisons Problem in Visual Analysis

https://dl.acm.org/doi/10.1145/3276463
https://research.google/pubs/pub47966/
https://cs.brown.edu/research/ptc/assets/publications/zgraggeninvestigating.pdf

Hypothesis testing
Null hypothesis H0: No effect on the population/no relationship
between variables. Commonly accepted facts.
Example H0: μ = μ0, μ1 = μ2

Alternative hypothesis H1: The opposite of null; also called
“research hypothesis”
Example H1: μ ≠ μ0 (two-tailed), μ < μ0 (left-tailed), μ > μ0 (right-
tailed)

Hypothesis testing
Significance level 𝛼:Common values: 0.01. 0.05, 0.1.
P-value: Probability that your data would have occurred by random
chance, assuming that the null hypothesis is true

P-value < α: reject null hypothesis
P-value > α: not enough evidence to reject null hypothesis

does not necessarily mean null hypothesis is true

Hypothesis testing
Effect size: Strength/magnitude of relationship (significant effects
might not always be substantial)

Correlation family: based on variance explained
Pearson r correlation (for paired data)
Coefficient of determination (r2)

Difference family: based on differences between means
Cohen’s d = mean difference / standard deviation

How to calculate p-value
1. Pick alternative hypothesis:
two tailed, right-tailed, left-tailed
2. Determine distribution of test
statistics under the null
hypothesis: normal, student-t,
chi-squared etc.
3. Optional: specify degrees of
freedom

How to calculate p-value
Z-test (normal distribution):
population mean
T-test (Student-t): population
mean with unknown variance
𝜒! test: variance of normal
distributions; independence test;
goodness-of-fit test

Hypothesis testing
Type 1 Error:

false positive, reject a null hypothesis that is true
concluding results are statistically significant when they are not

Type II Error:
false negative, fails to reject a null hypothesis that is false

Probability of making a type I error = 𝛼 (significance level)

Multiple hypothesis testing
Applies to scenarios in which a statistical analysis involves multiple
simultaneous statistical tests, each of which has a potential to
produce a "discovery."
A stated confidence level generally applies only to each test
considered individually, but often it is desirable to have a confidence
level for the whole family of simultaneous tests.
Failure to compensate for multiple comparisons can lead to false
discoveries.

Multiple hypothesis testing
Example: There are 20 options we are interested in as independent
(predictor) features for your model. For each feature, we use a
hypothesis test with level of significance 0.05.

What’s the probability of having one significant result just due to
chance? (Recall that probability of making a type I error is 𝛼)

1 - (1-0.05)20=0.64

Multiple hypothesis correction
Family-wise error rate (FWER) correction: control the probability
for at least one Type I error
• Bonferroni Correction: control the α by divide it with the

number of the testing/number of the hypothesis for each
hypothesis.

𝛼!"# = 𝛼/𝑛

Multiple hypothesis correction
False Discovery Rate (FDR): control the expected Type I error
proportion
• Benjamini-Hochberg (BH) correction method: the α level

correction is not uniform for each hypothesis testing; instead, it
was varied depending on the P-value ranking

𝑃$ =
𝑘
𝑛
𝛼

Question
• What hypotheses were tested in MacroBase?
• Is multiple hypothesis testing problem a concern in MacroBase?

Today’s class
Slice Finder: Automated Data Slicing for Model Validation

Authors: Andrew

Reviewer: Shen En

Archaeologist: Qiandong

Practitioner: Bojun

Automated Data Slicing for
Model Validation

Authors:
Yeounoh Chung, Tim Kraska, Neoklis

Polyzotis, Ki Hyun Tae, and Steven
Euijong Whang

Presenter: Andrew Zhao

Problem Statement

Assumption: ML model performance applies equally (more or
less) to all the data

Reality: ML Models can fail spectacularly on certain subsets of
data

Challenge: How can we find interpretable slices that are both
problematic and sufficiently large?

Importance – AI Fairness
There are existing, high-impact
AI systems that suffer from fairness
issues

(Najibi A., 2020)

https://nihcm.org/publications/artificial-intelligences-racial-bias-in-health-care

Other Applications

- Fraud detection – Changes in slice performance can indicate fraud

- Business Analytics – Which slices are the most promising

- Data cleaning – The scoring function can generalize to any metric (NaN
values, out of range)

Set up the Bit (Existing Solutions)

Manual Labelling by Domain
Experts

Search Lowest
Performance Slices

Clustering

Pros - Likely high performance
- Makes normative sense

- Easy implementation - Natural way of grouping
data

- Captures multi-dimensional
relationships

Cons - Can miss important slices
- Many ML applications don’t
have domain experts

- Smaller slices have
noise (false
positives)

- Small slices are
uninterpretable and
low-impact

- Difficult to interpret clusters
- Hard to tune # of clusters

(can be hard to find a
balance between size of
clusters and effect size)

Bitflip

● What if we design an algorithm that slices along features
(interpretable), and maximizes both size of the slices
(interpretable) and statistical significance while minimizing
features (interpretable)?

Statistical Significance + Effect Size

● S = Slice, S’ = D – S, rest of examples

● Only look for positive differences where S is higher than S’
● Welch’s t-test = see if slice’s difference is statistically significant

● Effect Size: Captures the loss distribution difference between two slices
- Captures “how much two slices’ distributions are different”

Effect Size Interpretability
Small: 0.2
Medium: 0.5
Large: 0.8
One standard deviation: 1.0
Very Large: 1.3

Binary Loss Function

=

Effect Size

Welch’s t-test

Ordering

● We want to order slices by ↓ minimizing literals (features to slice on), while ↑ maximizing slice and
effect size

Tip: Users can input different effect size thresholds to test on

Decision Tree Training

● Prioritize splits on minimizing impurity
(I think this is just data splits)

● Non overlapping slices

Sex Age Education
F/M [18,33), [33, 66),

(66, 133]
B.S./M.S./PHD

All

Sex=Female Sex=Male

Sex=Male AND
Age=18-33

Sex=Male AND
Age=34-66

Sex=Male AND
Age=67-133

Lattice Searching

● BFS Search down by level, one level at a time (initialize E = exploration set with root node)

● 1. For each node in E, check that effectSize > T and add it to the priority queue
Priority queue based on ordering previously defined (↓ literals, ↑ slice and effect size)

● 2. Pop slices from the priority queue, testing statistical significance (with additional a-investing to
control for False Discovery)

If they are, add them to the top-k problematic slices, otherwise they’re not problematic

● 3. Find new slices to explore by adding 1 literal to non-problematic slices

● 4. Repeat

False Discovery Control (alpha-investing)

● Motivation: statistical significance applies to singular hypotheses, and testing multiple hypotheses
is prone to false positives (not statistically significant slices being labeled as significant)

● Alpha-investing = Allocate the alpha wealth (error rate) over multiple tests, with increased alpha as
each hypothesis is rejected

Makes the investing less conservative and the test to more likely guess false positives

● Best-foot-forward policy – invests alpha-wealth into early hypotheses since those are likely to be
significant and true

● Good approach to manage false positives w/ unknown # of tests in any order

Experiments – Datasets/Models

● Census Income Classification – Random forest classifier to predict whether the income exceeds
$50K based on census data (15 features and 30K examples)

● Credit Card Fraud – Random forest classifier to predict credit card fraud (492 frauds out of 284k, 29
features)

Balanced dataset by sampling non-fraudulent data (final = 984 transactions, 492 frauds)

● Synthetic Dataset

○ Two discrete features F1 and F2, with perfect classes 0 and 1 (model is perfect)

● Create ground truth problematic slices by messing up labels along slices (50% probability to flip
label)

Experiments - Accuracy

Finding Large, Problematic Slices

● LS and DT outperform CL in effect size and slice size

● Census Income data – both find k=10 well

● Credit Card Fraud – DT runs into issues finding slices due
to non-overlapping, that’s why it has high effect size

● DT may have to search more levels than LS because its
not complete

Effect Size Threshold

● Lower T = more problematic slices
● Census Income: LS finds larger slices, but less effect size

○ After T = 0.4, LS does find higher effect size

● Credit Card Fraud

○ DT has to search many levels of decision tree, so

Big drop in average slice size (but then high effect size)

Runtime

● Good performance w sufficient examples

● Parallelization has linear improvements

● Recommendations make LS exponentially explode

FDR Performance and Power

● Alpha Investing (AI) performs better than
Benjamini-Hochberg procedure (BH) and
Bonferroni correction (BF)

● Power = probability test rejects null hypothesis

● AI + BH is better in FDR, AI has greatest power

Takeaways

● We have proposed two algorithms, decision tree training and lattice
searching, for maximizing interpretability by finding a small set of
highly significant, large slices for ML scientists

● Decision tree training is non-overlapping, …

● You can use the interactive visualization now!

○ Please give us feedback J

● Why should people care about your work?
● What are the key technical challenges and solutions?
● How did you evaluate your hypothesis?
● What are the main takeaways?

Bibliography

● Najibi, A. (2020, October 26). Racial discrimination in face recognition technology. Science in the News.
Retrieved October 24, 2022, from https://sitn.hms.harvard.edu/flash/2020/racial-discrimination-in-
face-recognition-technology/

Automated Data Slicing for Model Validation:
A Big Data - AI Integration Approach

Archaeologist: Qiandong Tang

How to identify subgroups of data where a
model performs differently?

Timeline

Ad Click Prediction
KDD 2013

MLCube Explorer
HILDA 2016

Slice Finder
TKDE 2018

FairVis
VAST 2019

MithraCoverage
SIGMOD 2020

DivExplorer
VLDB 2021

Supervised Unsupervised

Timeline

Ad Click Prediction
KDD 2013

MLCube Explorer
HILDA 2016

Slice Finder
TKDE 2018

FairVis
VAST 2019

MithraCoverage
SIGMOD 2020

DivExplorer
VLDB 2021

Supervised Unsupervised

Ad Click Prediction - a View from the Trenches

● Present an in-depth case studies drawn from experiments in the setting of the
deployed system used at Google to predict ad click-through rates

● In massive scale learning, the overall model performance may hide effects that
are specific to some subsets of data

● Developed GridViz, a high-dimensional visualization tool that allows users to
choose subsets and metrics for comparing models

GridViz

Slices of data

Model names

GridViz

Weakness:

● Simply provide a dropdown menu / regular expression to select slicing groups
○ Manual approach - Users have to be domain experts, could be time-consuming

Strength:

● Help engineers dramatically increase the depth of understanding for model
performance on a wide variety of subsets of the data, and to identify high impact
areas for improvement

How Divergent is your Data?

● Propose DivExplorer, a visual analytics tool that automatically identifies and
inspects subsets of data where a model performs differently

● Key Differences:
○ Completely explore all divergent subgroups that are adequately represented in the dataset,

selected by a frequency threshold
○ Allow users to analyze the factors that contribute to the problematic performance

DivExplorer

Summary

● Ad Click Prediction - a View from the Trenches

How to identify subgroups of data that a model performs differently?

● Automated Data Slicing for Model Validation: A Big data - AI Integration Approach

How to automatically identify subgroups of data…?

● How Divergent is Your Data?

How to automatically identify and inspect subgroups of data…?

References

● H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov, D. Golovin et al., “Ad click
prediction: a view from the trenches,” in KDD, 2013, pp. 1222–1230.

● M. Kahng, D. Fang, and D. H. P. Chau, “Visual exploration of machine learning results using data cube analysis,” in HILDA.
ACM, 2016, p. 1.

● Yeounoh Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun Tae, and Steven Euijong Whang. 2020. Automated Data Slicing
for Model Validation: A Big Data - AI Integration Approach. IEEE Transactions on Knowledge and Data Engineering 32, 12
(2020), 2284ś2296.

● ÁngelAlexanderCabrera,WillEpperson,FredHohman,MinsukKahng,Jamie Morgenstern, and Duen Horng Chau. 2019.
FairVis: Visual analytics for discovering intersectional bias in machine learning. In 2019 IEEE Conference on Visual
Analytics Science and Technology (VAST). IEEE, 46ś56.

● Pastor, Eliana, et al. "How divergent is your data?." Proceedings of the VLDB Endowment 14.12 (2021): 2835-2838.

Slice Finder
Practitioner - Bojun Yang

Summary

- Tool for efficiently and accurately finding large, significant, and interpretable
slices of data that a particular model performs badly on

- Model validation, model fairness, fraud detection
- Human interpretability → understanding model behavior

Company

- We make ML platforms for users to quickly build, train, and deploy models
- Similar to AWS Sagemaker

Sample user workflow

1. Prepare data: wrangle data, aggregate, etc
a. Process data: built in python, spark
b. Detect data bias

2. Build/test: using pre-built algorithms or write your own
a. UI based discovery and training of models
b. Slice finder: use slices to debug model and improve model understanding

3. Train and tune
a. Hyperparameter tuning

4. Deploy and manage model

https://dl.acm.org/doi/10.1145/3276463
https://research.google/pubs/pub47966/
https://cs.brown.edu/research/ptc/assets/publications/zgraggeninvestigating.pdf

Pros

- Easy to implement in our architecture since we already have data processing
architecture

- We already offer bias detection and model understanding
- Useful for the user to debug model bias and validation during the model

building process
- More explainable models give users better insights, applicability, and adoption

of ML models
- Support overlapping and non-overlapping slice detection

Cons

- Sampling needed to improve runtime, but accuracy is lower
- No parallelization speedup comparisons

- Current decision tree approach does not support parallelism
- Only supports/tested on binary classification tasks with log loss
- False positives (non-problematic slices labeled as problematic) might confuse

users
- Users may not know how to effectively set effect size threshold

Automated Data Slicing for Model Validation:
A Big Data - AI Integration Approach

Peer Review

Shen En Chen

Summary of Contribution

The authors of the paper extended their previous work Slice Finder, a data slicing system that models the

identification of problematic data slices as hypothesis testing and controlling false discovery rates with 𝛼-investing.

The system improves upon the baseline clustering-based approaches with two novel algorithms using decision trees

and lattice searching, respectively. Both outperform clustering in terms of accuracy, interpretability, and

problematicity of identified slices and can couple with parallelization and sampling to increase scalability. The

system also comes with GUI that helps user quickly browse through problematic slices and their summaries. In terms

of use cases and evaluation, the authors presented model fairness as one potential use case and evaluated the

models on both synthetic and real data. Effectively, Slice Finder is a data slice discovery tool that (1) navigates

through the search space efficiently to (2) provide understandable slices that are (3) large enough to have a

non-negligible impact on the overall model quality with (4) false discovery control, allowing machine learning

practitioners to interpret and debug models on a more granular level.

Strong Points

1. The authors formulated the problem of identifying problematic slices as hypothesis testing, evaluating a slice on the

statistical significance of its relative losses and the effective size. The former measures the existence of differences in

the objective loss and the latter measures the magnitude of it.

2. Slice Finder incorporates 𝛼-investing (best-foot-forward policy) to find statistically significant slices among a stream of

slices by making the procedure become less conservative and putting more weight on more likely to be faulty null

hypotheses.

3. Slice Finder provides two non-clustering data slicing approaches: decision tree and lattice searching. The latter offers

more flexibility by allowing overlapping slices. Both solve provide high interpretability unlike clustering-based

approaches and can search top-down efficiently.

4. The authors recognized the lack of “ground truth” for true problematic slices in real datasets and experimented with the

system on synthetic data in addition to real data to standardize the ground truths.

5. The GUI allows users to interact with the slicing results and tune the system.

6. The system is able to generalize on unstructured data that contains annotations/metadata that are analogous to

columns in tabular data.

Opportunities for Improvement

1. Using sampling to increase scalability is justified empirically with preserved slicing performance instead of proven

theoretical bounds.

2. Slice Finder seems to be designed only for balanced datasets.

3. For lattice searching, it is unclear how the bin sizes are determined when discretizing numeric values.

4. More user studies can be done to evaluate how helpful the slices are for practitioners to explain and debug models.

5. Support for merging and summarization of slices may help practitioners to combine slices that are too granular for

better interpretation and summarization.

6. The data slices are characterized by a conjunction of literals with interval operators. This means that the slice

interpretability depends on the feature interpretability. The slices would still be difficult to understand if they were

sliced on engineered features that have no trivial meaning.

Accept

Discussion
• How are the data slices similar/different from explanations

generated from MacroBase?
• Can you use MacroBase to find data slices?

Next class
Domino: Discovering Systematic Errors with Cross-Model
Embeddings

Authors: Cuong, Jingfan

Reviewer: Tanya, Abhinav

Archaeologist: Sankalp

Researcher: Shubham

