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Hypothesis testing
• If the system recommends a discovery to users, how do we know if 

the event is ”significant”
• When users explore datasets for “interesting” events, they are 

performing hypothesis tests without knowing it 

Relevant papers: 
MacroBase: Prioritizing Attention in Fast Data
Slice Finder: Automated Data Slicing for Model Validation
Investigating the Effect of the Multiple Comparisons Problem in Visual Analysis

https://dl.acm.org/doi/10.1145/3276463
https://research.google/pubs/pub47966/
https://cs.brown.edu/research/ptc/assets/publications/zgraggeninvestigating.pdf


Hypothesis testing
Null hypothesis H0: No effect on the population/no relationship 
between variables. Commonly accepted facts. 
Example H0: μ = μ0, μ1 = μ2

Alternative hypothesis H1: The opposite of null; also called 
“research hypothesis”
Example H1: μ ≠ μ0 (two-tailed), μ < μ0 (left-tailed), μ > μ0 (right-
tailed)



Hypothesis testing
Significance level 𝛼:Common values: 0.01. 0.05, 0.1.
P-value: Probability that your data would have occurred by random 
chance, assuming that the null hypothesis is true

P-value < α: reject null hypothesis 
P-value > α: not enough evidence to reject null hypothesis 

does not necessarily mean null hypothesis is true



Hypothesis testing
Effect size: Strength/magnitude of relationship (significant effects 
might not always be substantial) 

Correlation family: based on variance explained
Pearson r correlation (for paired data)
Coefficient of determination (r2)

Difference family: based on differences between means
Cohen’s d =  mean difference / standard deviation



How to calculate p-value 
1. Pick alternative hypothesis: 
two tailed, right-tailed, left-tailed 
2. Determine distribution of test 
statistics under the null 
hypothesis: normal, student-t, 
chi-squared etc. 
3. Optional: specify degrees of 
freedom 



How to calculate p-value 
Z-test (normal distribution): 
population mean 
T-test (Student-t): population 
mean with unknown variance
𝜒! test: variance of normal 
distributions; independence test; 
goodness-of-fit test 



Hypothesis testing
Type 1 Error: 

false positive, reject a null hypothesis that is true
concluding results are statistically significant when they are not

Type II Error: 
false negative, fails to reject a null hypothesis that is false 

Probability of making a type I error = 𝛼 (significance level)



Multiple hypothesis testing
Applies to scenarios in which a statistical analysis involves multiple 
simultaneous statistical tests, each of which has a potential to 
produce a "discovery." 
A stated confidence level generally applies only to each test 
considered individually, but often it is desirable to have a confidence 
level for the whole family of simultaneous tests.
Failure to compensate for multiple comparisons can lead to false 
discoveries. 



Multiple hypothesis testing
Example: There are 20 options we are interested in as independent 
(predictor) features for your model. For each feature, we use a 
hypothesis test with level of significance 0.05.

What’s the probability of having one significant result just due to 
chance? (Recall that probability of making a type I error is 𝛼)

1 - (1-0.05)20=0.64



Multiple hypothesis correction
Family-wise error rate (FWER) correction: control the probability 
for at least one Type I error
• Bonferroni Correction: control the α by divide it with the 

number of the testing/number of the hypothesis for each 
hypothesis.

𝛼!"# = 𝛼/𝑛



Multiple hypothesis correction
False Discovery Rate (FDR): control the expected Type I error 
proportion
• Benjamini-Hochberg (BH) correction method: the α level 

correction is not uniform for each hypothesis testing; instead, it 
was varied depending on the P-value ranking

𝑃$ =
𝑘
𝑛
𝛼



Question 
• What hypotheses were tested in MacroBase?
• Is multiple hypothesis testing problem a concern in MacroBase?
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Problem Statement

Assumption: ML model performance applies equally (more or 
less) to all the data

Reality: ML Models can fail spectacularly on certain subsets of 
data

Challenge: How can we find interpretable slices that are both 
problematic and sufficiently large?



Importance – AI Fairness
There are existing, high-impact 
AI systems that suffer from fairness
issues

(Najibi A., 2020)

https://nihcm.org/publications/artificial-intelligences-racial-bias-in-health-care



Other Applications

- Fraud detection – Changes in slice performance can indicate fraud

- Business Analytics – Which slices are the most promising

- Data cleaning – The scoring function can generalize to any metric (NaN
values, out of range)



Set up the Bit (Existing Solutions)

Manual Labelling by Domain 
Experts

Search Lowest 
Performance Slices

Clustering

Pros - Likely high performance
- Makes normative sense

- Easy implementation - Natural way of grouping 
data

- Captures multi-dimensional 
relationships

Cons - Can miss important slices
- Many ML applications don’t 
have domain experts

- Smaller slices have 
noise (false 
positives)

- Small slices are 
uninterpretable and 
low-impact

- Difficult to interpret clusters
- Hard to tune # of clusters 

(can be hard to find a 
balance between size of 
clusters and effect size)



Bitflip

● What if we design an algorithm that slices along features 
(interpretable), and maximizes both size of the slices 
(interpretable) and statistical significance while minimizing 
features (interpretable)?



Statistical Significance + Effect Size

● S = Slice, S’ = D – S, rest of examples

● Only look for positive differences where S is higher than S’
● Welch’s t-test = see if slice’s difference is statistically significant

● Effect Size: Captures the loss distribution difference between two slices
- Captures “how much two slices’ distributions are different”

Effect Size Interpretability
Small: 0.2
Medium: 0.5
Large: 0.8
One standard deviation: 1.0
Very Large: 1.3

Binary Loss Function

=

Effect Size

Welch’s t-test



Ordering

● We want to order slices by ↓ minimizing literals (features to slice on), while ↑ maximizing slice and 
effect size

Tip: Users can input different effect size thresholds to test on



Decision Tree Training

● Prioritize splits on minimizing impurity 
(I think this is just data splits)

● Non overlapping slices

Sex Age Education
F/M [18,33), [33, 66), 

(66, 133]
B.S./M.S./PHD

All

Sex=Female Sex=Male

Sex=Male AND 
Age=18-33  

Sex=Male AND 
Age=34-66  

Sex=Male AND 
Age=67-133



Lattice Searching

● BFS Search down by level, one level at a time (initialize E = exploration set with root node)

● 1. For each node in E, check that effectSize > T and add it to the priority queue
Priority queue based on ordering previously defined (↓ literals, ↑ slice and effect size)

● 2. Pop slices from the priority queue, testing statistical significance (with additional a-investing to 
control for False Discovery)

If they are, add them to the top-k problematic slices, otherwise they’re not problematic

● 3. Find new slices to explore by adding 1 literal to non-problematic slices

● 4. Repeat



False Discovery Control (alpha-investing)

● Motivation: statistical significance applies to singular hypotheses, and testing multiple hypotheses 
is prone to false positives (not statistically significant slices being labeled as significant)

● Alpha-investing = Allocate the alpha wealth (error rate) over multiple tests, with increased alpha as 
each hypothesis is rejected 

Makes the investing less conservative and the test to more likely guess false positives

● Best-foot-forward policy – invests alpha-wealth into early hypotheses since those are likely to be 
significant and true

● Good approach to manage false positives w/ unknown # of tests in any order



Experiments – Datasets/Models

● Census Income Classification – Random forest classifier to predict whether the income exceeds 
$50K based on census data (15 features and 30K examples)

● Credit Card Fraud – Random forest classifier to predict credit card fraud (492 frauds out of 284k, 29 
features)

Balanced dataset by sampling non-fraudulent data (final = 984 transactions, 492 frauds)

● Synthetic Dataset

○ Two discrete features F1 and F2, with perfect classes 0 and 1 (model is perfect)

● Create ground truth problematic slices by messing up labels along slices (50% probability to flip 
label)



Experiments - Accuracy



Finding Large, Problematic Slices

● LS and DT outperform CL in effect size and slice size

● Census Income data – both find k=10 well

● Credit Card Fraud – DT runs into issues finding slices due
to non-overlapping, that’s why it has high effect size

● DT may have to search more levels than LS because its
not complete



Effect Size Threshold

● Lower T = more problematic slices
● Census Income: LS finds larger slices, but less effect size

○ After T = 0.4, LS does find higher effect size

● Credit Card Fraud

○ DT has to search many levels of decision tree, so

Big drop in average slice size (but then high effect size)



Runtime

● Good performance w sufficient examples

● Parallelization has linear improvements

● Recommendations make LS exponentially explode



FDR Performance and Power

● Alpha Investing (AI) performs better than 
Benjamini-Hochberg procedure (BH) and
Bonferroni correction (BF)

● Power = probability test rejects null hypothesis

● AI + BH is better in FDR, AI has greatest power



Takeaways

● We have proposed two algorithms, decision tree training and lattice 
searching, for maximizing interpretability by finding a small set of 
highly significant, large slices for ML scientists

● Decision tree training is non-overlapping, …

● You can use the interactive visualization now!

○ Please give us feedback J



● Why should people care about your work? 
● What are the key technical challenges and solutions?
● How did you evaluate your hypothesis? 
● What are the main takeaways?



Bibliography

● Najibi, A. (2020, October 26). Racial discrimination in face recognition technology. Science in the News. 
Retrieved October 24, 2022, from https://sitn.hms.harvard.edu/flash/2020/racial-discrimination-in-
face-recognition-technology/ 



Automated Data Slicing for Model Validation: 
A Big Data - AI Integration Approach

Archaeologist: Qiandong Tang



How to identify subgroups of data where a 
model performs differently?



Timeline

Ad Click Prediction 
KDD 2013

MLCube Explorer 
HILDA 2016

Slice Finder 
TKDE 2018

FairVis
VAST 2019

MithraCoverage 
SIGMOD 2020

DivExplorer 
VLDB 2021

Supervised Unsupervised 



Timeline

Ad Click Prediction 
KDD 2013

MLCube Explorer 
HILDA 2016

Slice Finder 
TKDE 2018

FairVis
VAST 2019

MithraCoverage 
SIGMOD 2020

DivExplorer 
VLDB 2021

Supervised Unsupervised 



Ad Click Prediction - a View from the Trenches

● Present an in-depth case studies drawn from experiments in the setting of the 
deployed system used at Google to predict ad click-through rates

● In massive scale learning, the overall model performance may hide effects that 
are specific to some subsets of data

● Developed GridViz, a high-dimensional visualization tool that allows users to 
choose subsets and metrics for comparing models 



GridViz

Slices of data

Model names



GridViz

Weakness:

● Simply provide a dropdown menu / regular expression to select slicing groups
○ Manual approach - Users have to be domain experts, could be time-consuming

Strength:

● Help engineers dramatically increase the depth of understanding for model 
performance on a wide variety of subsets of the data, and to identify high impact 
areas for improvement


How Divergent is your Data?

● Propose DivExplorer, a visual analytics tool that automatically identifies and 
inspects subsets of data where a model performs differently

● Key Differences:
○ Completely explore all divergent subgroups that are adequately represented in the dataset, 

selected by a frequency threshold
○ Allow users to analyze the factors that contribute to the problematic performance



DivExplorer


Summary

● Ad Click Prediction - a View from the Trenches

How to identify subgroups of data that a model performs differently?

● Automated Data Slicing for Model Validation: A Big data - AI Integration Approach

How to automatically identify subgroups of data…?

● How Divergent is Your Data?

How to automatically identify and inspect subgroups of data…?


References
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Summary

- Tool for efficiently and accurately finding large, significant, and interpretable 
slices of data that a particular model performs badly on

- Model validation, model fairness, fraud detection
- Human interpretability → understanding model behavior



Company

- We make ML platforms for users to quickly build, train, and deploy models
- Similar to AWS Sagemaker



Sample user workflow

1. Prepare data: wrangle data, aggregate, etc
a. Process data: built in python, spark
b. Detect data bias

2. Build/test: using pre-built algorithms or write your own
a. UI based discovery and training of models
b. Slice finder: use slices to debug model and improve model understanding

3. Train and tune
a. Hyperparameter tuning

4. Deploy and manage model

https://dl.acm.org/doi/10.1145/3276463
https://research.google/pubs/pub47966/
https://cs.brown.edu/research/ptc/assets/publications/zgraggeninvestigating.pdf


Pros

- Easy to implement in our architecture since we already have data processing 
architecture

- We already offer bias detection and model understanding
- Useful for the user to debug model bias and validation during the model 

building process
- More explainable models give users better insights, applicability, and adoption 

of ML models
- Support overlapping and non-overlapping slice detection



Cons

- Sampling needed to improve runtime, but accuracy is lower
- No parallelization speedup comparisons

- Current decision tree approach does not support parallelism
- Only supports/tested on binary classification tasks with log loss
- False positives (non-problematic slices labeled as problematic) might confuse 

users
- Users may not know how to effectively set effect size threshold


Automated Data Slicing for Model Validation:
A Big Data - AI Integration Approach

Peer Review

Shen En Chen



Summary of Contribution

The authors of the paper extended their previous work Slice Finder, a data slicing system that models the 

identification of problematic data slices as hypothesis testing and controlling false discovery rates with 𝛼-investing. 

The system improves upon the baseline clustering-based approaches with two novel algorithms using decision trees 

and lattice searching, respectively. Both outperform clustering in terms of accuracy, interpretability, and 

problematicity of identified slices and can couple with parallelization and sampling to increase scalability. The 

system also comes with GUI that helps user quickly browse through problematic slices and their summaries. In terms 

of use cases and evaluation, the authors presented model fairness as one potential use case and evaluated the 

models on both synthetic and real data. Effectively, Slice Finder is a data slice discovery tool that (1) navigates 

through the search space efficiently to (2) provide understandable slices that are (3) large enough to have a 

non-negligible impact on the overall model quality with (4) false discovery control, allowing machine learning 

practitioners to interpret and debug models on a more granular level. 



Strong Points

1. The authors formulated the problem of identifying problematic slices as hypothesis testing, evaluating a slice on the 

statistical significance of its relative losses and the effective size. The former measures the existence of differences in 

the objective loss and the latter measures the magnitude of it.

2. Slice Finder incorporates 𝛼-investing (best-foot-forward policy) to find statistically significant slices among a stream of 

slices by making the procedure become less conservative and putting more weight on more likely to be faulty null 

hypotheses.

3. Slice Finder provides two non-clustering data slicing approaches: decision tree and lattice searching. The latter offers 

more flexibility by allowing overlapping slices. Both solve provide high interpretability unlike clustering-based 

approaches and can search top-down efficiently. 

4. The authors recognized the lack of “ground truth” for true problematic slices in real datasets and experimented with the 

system on synthetic data in addition to real data to standardize the ground truths.

5. The GUI allows users to interact with the slicing results and tune the system.

6. The system is able to generalize on unstructured data that contains annotations/metadata that are analogous to 

columns in tabular data.



Opportunities for Improvement

1. Using sampling to increase scalability is justified empirically with preserved slicing performance instead of proven 

theoretical bounds.

2. Slice Finder seems to be designed only for balanced datasets.

3. For lattice searching, it is unclear how the bin sizes are determined when discretizing numeric values. 

4. More user studies can be done to evaluate how helpful the slices are for practitioners to explain and debug models.

5. Support for merging and summarization of slices may help practitioners to combine slices that are too granular for 

better interpretation and summarization.

6. The data slices are characterized by a conjunction of literals with interval operators. This means that the slice 

interpretability depends on the feature interpretability. The slices would still be difficult to understand if they were 

sliced on engineered features that have no trivial meaning.



Accept



Discussion
• How are the data slices similar/different from explanations 

generated from MacroBase?
• Can you use MacroBase to find data slices?
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