CS 8803-MDS Human-in-the-loop Data Analytics

Lecture 16 10/19/22

Logistics

First progress report due this Friday (10/21) Assignment available on gradescope

Project update on 10/31

Today's class MacroBase: Prioritizing Attention in Fast Data Authors: Haotian, Yiheng Reviewer: Eric Researcher: Cuong

MacroBase: Prioritizing Attention in Fast Data

Presenters: Yiheng Mao, Haotian Sun

What's Happening in Data Analytics

Projected Data Growth % (IDC)

Exponential growth in data volume from 2016 to 2021

What's Happening in Data Analytics

- Data volumes are quickly outpacing human abilities to process them.
- Today, Twitter, LinkedIn, and Facebook each record over 12M events per second.
- Machine-generated data sources are projected to increase data volumes by 40% each year.

Scalable Dataflow Processing Engines in Industry

Scalable Dataflow Processing Engines in Industry

What's the catch?

Typical Monitoring Pipeline

Typical Monitoring Pipeline

Top silicon valley orgs report using **less than 6%** of their data in this process.

MacroBase: A fast data analysis system

- It bridges the gap between the availability of low-level dataflow processing engines and the need for efficient, accurate analytics engines that prioritize attention in fast data
- It is a monitoring engine that prioritizes user attention by combining classification and explanation with streaming dataflow

Target Environments

- Mobile apps: e.g., Cambridge Mobile Telematics App
- Datacenter operation: e.g., Amazon Web Services
- Industrial monitoring: e.g., temperature monitoring

MacroBase Default Analysis Pipeline (MDP)

MacroBase executes **pipelines** of specialized dataflow operators over input data streams. Each MacroBase query specifies a set of input data sources as well as a logical query plan, or pipeline of streaming operators, that describes the analysis.

MacroBase Default Analysis Pipeline (MDP)

MacroBase Default Analysis Pipeline (MDP)

Extensibility: feature transformation, classification and explanation operators are all customizable

Ingestion and Feature Transformation

- Ingestion: MacroBase ingests data streams for analysis from a number of external data sources.
- Feature Transformation: MacroBase executes an optional series of domain-specific data transformations over the stream, which could include time-series specific operations, statistical operations, and datatype specific operations.

MDP Classification

- To classify is to **segment** and **filter** stream by target behavior (e.g., abnormalities)
- For example, Z score provides a normalized way to measure the "outlying"-ness of a point

MDP Classification

- MacroBase's classification operators use unsupervised density-based classification to label input data points and identify data points that exhibit deviant behavior
- Robust Estimators: Median Absolute Deviation (MAD) and Minimum Covariance Determinant (MCD)
- MacroBase uses Adaptable Damped Reservoir to retrain MAD and MCD while streaming

MDP Explanation

Errors

{iOS 9.0 beta 1, AT&T}
{iOS 9.0 beta 1, AT&T}
{iOS 8.8.5, T-Mobile}
{iOS 9.0 beta 1, T-Mobile}
{iOS 9.0 beta 1, AT&T}
{iOS 9.0 beta 1, T-Mobile}

Non-Errors {iOS 9.0.1, AT&T} {iOS 9.0.1, AT&T} {iOS 9.0.1, T-Mobile} {iOS 9.0.1, AT&T} {iOS 8.8.5, T-Mobile} {iOS 8.8.5, AT&T} {iOS 9.0.1, T-Mobile} {iOS 9.0.1, AT&T}

Maybe some problem with iOS 9.0 beta 1

Explanation

MDP Explanation

- MDP returns explanations in the form of **attribute-value combinations** (e.g., device ID 5052) that are common among outlier points but uncommon among inlier points.
- MDP's streaming explanation operator utilizes an Amortized Maintenance Counter sketch and a prefix tree to maintain attributes in an approximate, frequency descending order.
- MacroBase periodically decays the counts of the items and the counts in each node of the prefix tree and prune any attributes that are no longer above the support threshold and rearranges the prefix tree in frequency-descending order.
- MacroBase runs FPGrowth on the prefix tree to produce explanations on demand.

Presentation

The number of output explanations may still be large. As a result, most pipelines rank explanations by statistics specific to the explanations before presentation.

ACCURACY

- Synthetic datasets
- Real-world datasets

EFFICIENCY

- Adaptivity
- End-to-End Performance
- Cardinality Awareness
- AMC Comparison

FLEXIBILITY

- Hybrid Supervision
- Time-series
- Video Surveillance

EFFICIENC

FLEXIBILITY

Synthetic Dataset Accuracy

- Recall that: F_1 -score $\left(2 \cdot \frac{precision \cdot recall}{precision+recall}\right)$
- Dimensionality: 1M data points
- Each data point: device ID attribute and metrics drawn from either an inlier or outlier distribution
- Inlier distribution: N(10, 10)
- Outlier distribution: N(70, 10)

- Recall that: F_1 -score $\left(2 \cdot \frac{precision \cdot recall}{precision+recall}\right)$
- Dimensionality: 1M data points
- Each data point: device ID attribute and metrics drawn from either an inlier or outlier distribution
- Inlier distribution: N(10, 10)
- Outlier distribution: N(70, 10)

Two types of Noise: Label noise:

Randomly exchange readings of the outliers with inliers

Measurement noise:

Randomly assign a proportion of both outlying and inlying points to a third, uniform distribution over the interval [0,80]

Two types of Noise: Label noise:

Randomly exchange readings of the outliers with inliers

Measurement noise:

Randomly assign a proportion of both outlying and inlying points to a third, uniform distribution over the interval [0,80]

- Recall that: F_1 -score $\left(2 \cdot \frac{precision \cdot recall}{precision+recall}\right)$
- Dimensionality: 1M data points
- Each data point: device ID attribute and metrics drawn from either an inlier or outlier distribution
- Inlier distribution: N(10, 10)
- Outlier distribution: N(70, 10)

Key Observations:

 Under label noise, MacroBase robustly identified the outlying devices until 25% noise;

Two types of Noise: Label noise:

Randomly exchange readings of the outliers with inliers

Measurement noise:

Randomly assign a proportion of both outlying and inlying points to a third, uniform distribution over the interval [0,80]

- Recall that: F_1 -score $\left(2 \cdot \frac{precision \cdot recall}{precision+recall}\right)$
- Dimensionality: 1M data points
- Each data point: device ID attribute and metrics drawn from either an inlier or outlier distribution
- Inlier distribution: N(10, 10)
- Outlier distribution: N(70, 10)

Key Observations:

Under label noise, MacroBase robustly identified the outlying devices until 25% noise;

Performance degraded when we exceed risk ratio threshold!

- Recall that: F_1 -score $\left(2 \cdot \frac{precision \cdot recall}{precision+recall}\right)$
- Dimensionality: 1M data points
- Each data point: device ID attribute and metrics drawn from either an inlier or outlier distribution
- Inlier distribution: N(10, 10)
- Outlier distribution: N(70, 10)

Two types of Noise: Label noise:

Randomly exchange readings of the outliers with inliers

Measurement noise:

Randomly assign a proportion of both outlying and inlying points to a third, uniform distribution over the interval [0,80]

Key Observations:

- Under label noise, MacroBase robustly identified the outlying devices until 25% noise;
- Under measurement noise, accuracy degrades linearly with the amount of noise.

Distinguish abnormally-behaving in online transaction processing (OLTP) system.

- Experiments on performance degradation within MySQL on a particular OLTP workload (TPC-C and TPC-E).
- TPC-C (Transaction Processing Performance Council Benchmark C) & TPC-E (Transaction Processing Performance Council Benchmark E)

Real-world Dataset Accuracy

TPC-C (QS: one MacroBase query per cluster): top-1: 88.8%, top-3: 88.8%									
	A1	A2	A3	A4	A5	A6	A7	A8	A9
Train top-1 correct (of 9)	9	9	9	9	9	8	9	9	8
Holdout top-1 correct (of 2)	2	2	2	2	2	2	2	2	0
TPC-C (QE: one MacroBase query per anomaly type): top-1: 83.3%, top-3: 10									op-3: 100
	A1	A2	A3	A4	A5	A6	A7	A8	A9
Train top-1 correct (of 9)	9	9	9	9	9	8	9	9	7
Holdout top-1 correct (of 2)	2	2	2	2	2	1	2	2	0
TPC-E (QS: one MacroBase query per cluster): top-1: 83.3%, top-3: 88.8%									
	A1	A2	A3	A4	A5	A6	A7	A8	A9
Train top-1 correct (of 9)	9	9	9	9	9	8	9	9	0
Holdout top-1 correct (of 2)	2	2	2	2	2	1	2	2	0
TPC-E (QE: one MacroBase query per anomaly type): top-1: 94.4%, top-3: 100									
	A1	A2	A3	A4	A5	A6	A7	A8	A9
Train top-1 correct (of 9)	9	9	9	9	9	8	9	9	6
Holdout top-1 correct (of 2)	2	2	2	2	2	1	2	2	2
Tab. MDP accuracy on DBSherlock workload.									

A1: workload spike,
A2: I/O stress,
A3: DB backup,
A4: table restore,
A5: CPU stress,
A6: flush log/table;
A7: network congestion;
A8: lock contention;
A9: poorly written query.

Metrics of A9 is different.

Real-world Dataset Accuracy

TPC-C (OS: one MacroB	ase o	nerv i	per cl	uster	ton	-1.8	88%	ton-	3.88.8%
	$\frac{abc}{A1}$	$\frac{\Delta 2}{\Delta 2}$	A3		$\frac{10p}{A5}$	A6	A7	A8	A9
Train top-1 correct (of 9)	9	9	9	9	9	8	9	9	8
Holdout top-1 correct (of 2)	2	2	2	2	2	2	2	2	0
TPC-C (QE: one MacroBase query per anomaly type): top-1: 83.3%, top-3: 100									
	A1	A2	A3	A4	A5	A6	A7	A8	A9
Train top-1 correct (of 9)	9	9	9	9	9	8	9	9	7
Holdout top-1 correct (of 2)	2	2	2	2	2	1	2	2	0
TPC-E (QS: one MacroBase query per cluster): top-1: 83.3%, top-3: 88.8%									
	A1	A2	A3	A4	A5	A6	A7	A8	A9
Train top-1 correct (of 9)	9	9	9	9	9	8	9	9	0
Holdout top-1 correct (of 2)	2	2	2	2	2	1	2	2	0
TPC-E (QE: one MacroBase query per anomaly type): top-1: 94.4%, top-3: 100									
	A1	A2	A3	A4	A5	A6	A7	A8	A9
Train top-1 correct (of 9)	9	9	9	9	9	8	9	9	6
Holdout top-1 correct (of 2)	2	2	2	2	2	1	2	2	2
Tab. MDP accuracy on DBSherlock workload.									

A1: workload spike, A2: I/O stress, A3: DB backup, A4: table restore, A5: CPU stress, A6: flush log/table; A7: network congestion; A8: lock contention; A9: poorly written query.

QE

QE with higher Top-3 accuracy:

QE targets each type of performance degradation with a custom set of metrics.

With proper feature selection, MacroBase accurately recovers systemic causes even in unsupervised settings!

ACCURACY

EFFICIENCY

Three sampling techniques:

- uniform reservoir sampling (Uniform)
- per-tuple exponentially decaying reservoir sampling (Every)
- ADR

ACCURACY

EFFICIENCY

- In the first period, all three methods detect D0 as an outlier;
- In the second period, adaptive methods detect D0;

ACCURACY

EFFICIENCY

- In the first period, all three methods detect D0 as an outlier;
- In the second period, adaptive methods detect D0;
- In 225-250s, adaptive methods track the changes in D0;

ACCURACY

EFFICIENCY

- In the first period, all three methods detect D0 as an outlier;
- In the second period, adaptive methods detect D0;
- In 225-250s, adaptive methods track the changes in D0;
- At 300s, ADR is robust against the spike change; per-tuple method is subject to absorbing the spikes.

Adaptivity to distribution changes and resilience to variable arrival rates!
End-to-End Performance

me Metrics 1 2 2	Attrs 1	Points	One-shot	EWS	One shot	TIMO	~ ·		
	1				One-shot	Ews	One-shot	EWS	Similarity
2 2		3.05M	1549.7K	967.6K	1053.3K	966.5K	28	33	0.74
	4		385.9K	504.5K	270.3K	500.9K	500	334	0.35
1	1	10M	2317.9K	698.5K	360.7K	698.0K	469	1	0.00
5 5	2	10101	208.2K	380.9K	178.3K	380.8K	675	1	0.00
1	1	10M	2579.0K	778.8K	1784.6K	778.6K	2	2	0.67
C 1	5	10101	2426.9K	252.5K	618.5K	252.1K	22	19	0.17
5 1	1	120K	998.1K	786.0K	729.8K	784.3K	2	2	1.00
C 3	3	430K	349.9K	417.8K	259.0K	413.4K	25	20	0.55
1	1	2 / 9M	1879.6K	1209.9K	1325.8K	1207.8K	41	38	0.84
2 1	6	3.40M	1843.4K	346.7K	565.3K	344.9K	1710	153	0.05
S 1	1	10M	1958.6K	564.7K	354.7K	562.6K	46	53	0.63
C 7	6	10101	182.6K	278.3K	147.9K	278.1K	255	98	0.29
	5 1 1 3 1 1 2 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

and exponentially weighted streaming (EWS) execution.

For each dataset X:

- XS: simple query w/ a single attribute and metric
- XC: complex query w/ more attributes and metrics (if applied)

- One-shot batch execution: each stage is processed in sequence (examine the whole datasets at once)
- Exponentially-weighted streaming execution (EWS): points are processed continuously (focus on recent points)

End-to-End Performance

, 		Queries			Thru w/o E	xplain (pts/s)	Thru w/ Exr	plain (pts/s)	# Explana	ations	Jaccard
Dataset	Name	Metrics	Attrs	Points	One-shot	EWS	One-shot	EWS	One-shot	EWS	Similarity
Liquan	LS	1	1	2.0514	1549.7K	967.6K	1053.3K	966.5K	28	33	0.74
Liquor	LC	2	4	5.05M	385.9K	504.5K	270.3K	500.9K	500	334	0.35
Talacom	TS	1	1	10M	2317.9K	698.5K	360.7K	698.0K	469	1	0.00
Telecolli	TC	5	2	10101	208.2K	380.9K	178.3K	380.8K	675	1	0.00
Compaign	ES	1	1	1014	2579.0K	778.8K	1784.6K	778.6K	2	2	0.67
Campaign	EC	1	5	10101	2426.9K	252.5K	618.5K	252.1K	22	19	0.17
Assidants	AS	1	1	12012	998.1K	786.0K	729.8K	784.3K	2	2	1.00
Accidents	AC	3	3	450K	349.9K	417.8K	259.0K	413.4K	25	20	0.55
Disburse	FS	1	1	2 191	1879.6K	1209.9K	1325.8K	1207.8K	41	38	0.84
Disbuise	FC	1	6	3.40M	1843.4K	346.7K	565.3K	344.9K	1710	153	0.05
CMT	MS	1	1	10M	1958.6K	564.7K	354.7K	562.6K	46	53	0.63
	MC	7	6	10101	182.6K	278.3K	147.9K	278.1K	255	98	0.29

Ave. Thru:

- One-shot: 1.39M
- EWS: 599K

Overall, one-shot generates more thru. than EWS, but it still depends heavily on the specific dataset and characteristics.

Tab. Datasets and query names, throughput, and explanations produced under one-shot and exponentially weighted streaming (EWS) execution.

For each dataset X:

- XS: simple query w/ a single attribute and metric
- XC: complex query w/ more attributes and metrics (if applied)

- One-shot batch execution: each stage is processed in sequence (examine the whole datasets at once)
- Exponentially-weighted streaming execution (EWS): points are processed continuously (focus on recent points)

End-to-End Performance

Queries Metrics			Then mile Er	1 1 / . / \					
Metrics		Queries			Thru w/ Ex	xplain (pts/s)	# Explanations		Jaccard
metres	Attrs	Points	One-shot	EWS	One-shot	EWS	One-shot	EWS	Similarity
1	1	2.05M	1549.7K	967.6K	1053.3K	966.5K	28	33	0.74
2	4	5.05IVI	385.9K	504.5K	270.3K	500.9K	500	334	0.35
1	1	10M	2317.9K	698.5K	360.7K	698.0K	469	1	0.00
5	2	10101	208.2K	380.9K	178.3K	380.8K	675	1	0.00
1	1	10M	2579.0K	778.8K	1784.6K	778.6K	2	2	0.67
1	5	10101	2426.9K	252.5K	618.5K	252.1K	22	19	0.17
1	1	120K	998.1K	786.0K	729.8K	784.3K	2	2	1.00
3	3	430K	349.9K	417.8K	259.0K	413.4K	25	20	0.55
1	1	2 4914	1879.6K	1209.9K	1325.8K	1207.8K	41	38	0.84
1	6	J.401VI	1843.4K	346.7K	565.3K	344.9K	1710	153	0.05
1	1	10M	1958.6K	564.7K	354.7K	562.6K	46	53	0.63
7	6	1014	182.6K	278.3K	147.9K	278.1K	255	98	0.29
	Metrics 1 2 1 5 1 1 3 1 1 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Metrics Attrs Points One-shot 1 1 3.05M 1549.7K 2 4 3.05M 1549.7K 385.9K 385.9K 385.9K 1 1 10M 2317.9K 2 208.2K 208.2K 208.2K 1 1 10M 2426.9K 1 1 430K 998.1K 3 3 430K 349.9K 1 1 3.48M 1879.6K 1 6 3.48M 1843.4K 1 1 10M 1958.6K 7 6 10M 182.6K	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Metrics Attrs Points One-shot Ews One-shot 1 1 3.05M 1549.7K 967.6K 1053.3K 2 4 3.05M 385.9K 504.5K 270.3K 1 1 10M 2317.9K 698.5K 360.7K 5 2 00M 208.2K 380.9K 178.3K 1 1 10M 2279.0K 778.8K 1784.6K 1 5 10M 2426.9K 252.5K 618.5K 3 3 430K 349.9K 417.8K 259.0K 1 1 3.48M 1879.6K 1209.9K 1325.8K 1 6 3.48M 1843.4K 346.7K 565.3K 1 1 10M 1958.6K 564.7K 354.7K 7 6 10M 182.6K 278.3K 147.9K	Metrics Aurs Points One-shot Ews One-shot Ews 1 1 3.05M 1549.7K 967.6K 1053.3K 966.5K 2 4 3.05M 1549.7K 967.6K 1053.3K 966.5K 2 4 3.05M 385.9K 504.5K 270.3K 500.9K 1 1 1 0M 2317.9K 698.5K 360.7K 698.0K 5 2 0M 208.2K 380.9K 178.3K 380.8K 1 1 10M 2579.0K 778.8K 1784.6K 778.6K 1 5 10M 2426.9K 252.5K 618.5K 252.1K 1 1 430K 998.1K 786.0K 729.8K 784.3K 3 3 430K 349.9K 417.8K 259.0K 413.4K 1 1 3.48M 1879.6K 1209.9K 1325.8K 1207.8K 1 6 3.48M <td< td=""><td>Metrics Aurs Points One-shot Ews One-shot Ews One-shot 1 1 1 3.05M 1549.7K 967.6K 1053.3K 966.5K 28 2 4 3.05M 1549.7K 967.6K 1053.3K 966.5K 28 2 4 3.05M 1549.7K 967.6K 1053.3K 966.5K 28 1 1 10M 2317.9K 698.5K 360.7K 698.0K 469 5 2 10M 2317.9K 698.5K 380.9K 178.3K 380.8K 675 1 1 0M 2579.0K 778.8K 1784.6K 778.6K 2 1 5 10M 2579.0K 252.5K 618.5K 252.1K 22 1 1 2426.9K 252.5K 618.5K 252.1K 22 1 1 430K 349.9K 417.8K 259.0K 413.4K 25 1 1</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td<>	Metrics Aurs Points One-shot Ews One-shot Ews One-shot 1 1 1 3.05M 1549.7K 967.6K 1053.3K 966.5K 28 2 4 3.05M 1549.7K 967.6K 1053.3K 966.5K 28 2 4 3.05M 1549.7K 967.6K 1053.3K 966.5K 28 1 1 10M 2317.9K 698.5K 360.7K 698.0K 469 5 2 10M 2317.9K 698.5K 380.9K 178.3K 380.8K 675 1 1 0M 2579.0K 778.8K 1784.6K 778.6K 2 1 5 10M 2579.0K 252.5K 618.5K 252.1K 22 1 1 2426.9K 252.5K 618.5K 252.1K 22 1 1 430K 349.9K 417.8K 259.0K 413.4K 25 1 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Generally, queries with multiple metrics in one-shot are slower than queries with single metrics, due to increased training time, as streaming trains over samples.

Tab. Datasets and query names, throughput, and explanations produced under one-shot and exponentially weighted streaming (EWS) execution.

For each dataset X:

- XS: simple query w/ a single attribute and metric
- XC: complex query w/ more attributes and metrics (if applied)

- One-shot batch execution: each stage is processed in sequence (examine the whole datasets at once)
- Exponentially-weighted streaming execution (EWS): points are processed continuously (focus on recent points)

End-to-End Performance

		Queries			Thru w/o Ex	plain (pts/s)	Thru w/ Exp	olain (pts/s)	# Explana	ations	Jaccard
Dataset	Name	Metrics	Attrs	Points	One-shot	EWS	One-shot	EWS	One-shot	EWS	Similarity
Liquor	LS	1	1	2 05M	1549.7K	967.6K	1053.3K	966.5K	28	33	0.74
Liquor	LC	2	4	5.05IVI	385.9K	504.5K	270.3K	500.9K	500	334	0.35
Talaaam	TS	1	1	10M	2317.9K	698.5K	360.7K	698.0K	469	1	0.00
Telecolli	TC	5	2	10101	208.2K	380.9K	178.3K	380.8K	675	1	0.00
Compaign	ES	1	1	10M	2579.0K	778.8K	1784.6K	778.6K	2	2	0.67
Campaign	EC	1	5	10101	2426.9K	252.5K	618.5K	252.1K	22	19	0.17
Accidents	AS	1	1	120K	998.1K	786.0K	729.8K	784.3K	2	2	1.00
Accidents	AC	3	3	430K	349.9K	417.8K	259.0K	413.4K	25	20	0.55
Dichurso	FS	1	1	2 / 9M	1879.6K	1209.9K	1325.8K	1207.8K	41	38	0.84
Disbuise	FC	1	6	3.40IVI	1843.4K	346.7K	565.3K	344.9K	1710	153	0.05
СМТ	MS	1	1	10M	1958.6K	564.7K	354.7K	562.6K	46	53	0.63
	MC	7	6	10141	182.6K	278.3K	147.9K	278.1K	255	98	0.29

Tab. Datasets and query names, throughput, and explanations produced under one-shot and exponentially weighted streaming (EWS) execution.

For each dataset X:

- XS: simple query w/ a single attribute and metric
- XC: complex query w/ more attributes and metrics (if applied)

Two system configs:

- One-shot batch execution: each stage is processed in sequence (examine the whole datasets at once)
- Exponentially-weighted streaming execution (EWS): points are processed continuously (focus on recent points)

For datasets with few distinct attribute values (Accidents contains only 9 types of weather conditions), the explanations will have high similarity. However, explanations differ in datasets with many distinct attribute values.

End-to-End Performance

(
	(Queries			Thru w/o Ex	plain (pts/s)	Thru w/ Exp	plain (pts/s)	# Explan	ations	Jaccard
Dataset	Name	Metrics	Attrs	Points	One-shot	EWS	One-shot	EWS	One-shot	EWS	Similarity
Liquor	LS	1	1	2.05M	1549.7K	967.6K	1053.3K	966.5K	28	33	0.74
Liquor	LC	2	4	5.05IVI	385.9K	504.5K	270.3K	500.9K	500	334	0.35
Talaaam	TS	1	1	10M	2317.9K	698.5K	360.7K	698.0K	469	1	0.00
Telecolli	TC	5	2	10101	208.2K	380.9K	178.3K	380.8K	675	1	0.00
Composion	ES	1	1	10M	2579.0K	778.8K	1784.6K	778.6K	2	2	0.67
Campaign	EC	1	5	10101	2426.9K	252.5K	618.5K	252.1K	22	19	0.17
Assidants	AS	1	1	120V	998.1K	786.0K	729.8K	784.3K	2	2	1.00
Accidents	AC	3	3	430 K	349.9K	417.8K	259.0K	413.4K	25	20	0.55
Disburge	FS	1	1	2 / 9M	1879.6K	1209.9K	1325.8K	1207.8K	41	38	0.84
Disbuise	FC	1	6	J.401VI	1843.4K	346.7K	565.3K	344.9K	1710	153	0.05
CMT	MS	1	1	10M	1958.6K	564.7K	354.7K	562.6K	46	53	0.63
	MC	7	6	10141	182.6K	278.3K	147.9K	278.1K	255	98	0.29

EWS generates fewer explanations than one-shot (temporal bias)

In practice, users tune their decay on a per-application basis.

Tab. Datasets and query names, throughput, and explanations produced under one-shot and exponentially weighted streaming (EWS) execution.

For each dataset X:

- XS: simple query w/ a single attribute and metric
- XC: complex query w/ more attributes and metrics (if applied)

- One-shot batch execution: each stage is processed in sequence (examine the whole datasets at once)
- Exponentially-weighted streaming execution (EWS): points are processed continuously (focus on recent points)

LEXIBILITY

End-to-End Performance

		Oueries			Thru w/o Ex	plain (pts/s)	Thru w/ Exp	olain (pts/s)	# Explana	ations	Jaccard
Dataset	Name	Metrics	Attrs	Points	One-shot	EWS	One-shot	EWS	One-shot	EWS	Similarity
Liquor	LS	1	1	2 05M	1549.7K	967.6K	1053.3K	966.5K	28	33	0.74
Liquor	LC	2	4	5.05IVI	385.9K	504.5K	270.3K	500.9K	500	334	0.35
Talacom	TS	1	1	10M	2317.9K	698.5K	360.7K	698.0K	469	1	0.00
Telecom	TC	5	2	10111	208.2K	380.9K	178.3K	380.8K	675	1	0.00
Composion	ES	1	1	10M	2579.0K	778.8K	1784.6K	778.6K	2	2	0.67
Campaign	EC	1	5	10101	2426.9K	252.5K	618.5K	252.1K	22	19	0.17
Accidents	AS	1	1	120K	998.1K	786.0K	729.8K	784.3K	2	2	1.00
Accidents	AC	3	3	430K	349.9K	417.8K	259.0K	413.4K	25	20	0.55
Disburse	FS	1	1	3 /8M	1879.6K	1209.9K	1325.8K	1207.8K	41	38	0.84
Disbuise	FC	1	6	J.+01VI	1843.4K	346.7K	565.3K	344.9K	1710	153	0.05
CMT	MS	1	1	10M	1958.6K	564.7K	354.7K	562.6K	46	53	0.63
	MC	7	6	10141	182.6K	278.3K	147.9K	278.1K	255	98	0.29

Tab. Datasets and query names, throughput, and explanations produced under one-shot and exponentially weighted streaming (EWS) execution.

For each dataset X:

- XS: simple query w/ a single attribute and metric
- XC: complex query w/ more attributes and metrics (if applied)

Two system configs:

- One-shot batch execution: each stage is processed in sequence (examine the whole datasets at once)
- Exponentially-weighted streaming execution (EWS): points are processed continuously (focus on recent points)

Runtime

Contributions:

- MS: MAD (54%)
- MC: MCD (52%)
- FC: Gen-EXP (65%)

The overhead of each component is data- and query-dependent.

Cardinality Awareness

- MacroBase leverages a unique *pruning strategy (support and risk ratio)* that harnesses the low cardinality of outliers and thus leads to large *speedups*;
- MacroBase produces a summary of each dataset's inliers and outliers in 0.22–1.4 seconds, i.e., 3.2x faster than unoptimized FPGrowth.
- Both are lower bounded by the linear pass over all inliers.

risk ratio =
$$\frac{a_o/(a_o + a_i)}{b_o/(b_o + b_i)}$$

Cardinality Awareness

- MacroBase leverages a unique *pruning strategy (support and risk ratio)* that harnesses the low cardinality of outliers and thus leads to large *speedups*;
- MacroBase produces a summary of each dataset's inliers and outliers in 0.22–1.4 seconds, i.e., 3.2x faster than unoptimized FPGrowth.
- Both are lower bounded by the linear pass over all inliers.

AMC Comparison

- AMC: Amortized Maintenance Counter;
- SSL: Space Saving List;
- SSH: Space Saving Hash.
- The Space Saving overhead is costly, because list traversal and heap maintenance on every operation is expensive.
- AMC trades space for performance.

When memory sizes are especially constrained, Space Saving may be preferable.

FLEXIBILITY

Hybrid Supervision: CMT

Cambridge Mobile Telematics:

Monitors driving behavior via mobile application available for smartphones

Question: Is the application behaving correctly on every platform?

Extra Input: Each trip in the CMT dataset is accompanied by a supervised diagnostic score representing the trip quality.

Extra Target: We also want to capture anomalies with a low supervised diagnostic score. (independent of the primal distribution)

Hybrid Supervision: CMT

Pipeline variant #1

Add parallel path for supervised classification

* Supervised classifier: special rule-based operator that flags low quality scores as anomalies.

FLEXIBILITY

Hybrid Supervision: CMT

Pipeline variant #1

Use a logical OR gate for integrating results

Runtime Analysis

• Runtime remains unaffected since the external rule-based path is lightweight.

Discrete-Time Short-Term Fourier Transform (STFT)

Window applied on the signal

FT applied on each window

Frequency-time plot

Spikes: do they indicate anomalies? NO!

household refrigerator spiked on an hourly basis possibly corresponding to compressor activity

Real anomaly detected:

FLEXIBILITY

Refrigerator consistently behaved abnormally compared to other devices in the household and to other time periods between the hours of 12PM and 1PM.

Real anomaly detected:

FLEXIBILITY

Refrigerator consistently behaved abnormally compared to other devices in the household and to other time periods between the hours of 12PM and 1PM.

Runtime Analysis

- Without feature transformation, the entire pipeline was completed in 158ms.
- Feature transformation dominated the runtime, i.e., 516s to transform the 16M points via unoptimized STFT.

Based on OpenCV, we add a custom feature transform that computes the average optical flow velocity between video frames

(a) original image (b) optical flow $F_{x,y}$

Fig. Frames containing violence highlighted by MDP

Runtime Analysis

Feature transformation via optical flow dominated runtime (22s vs. 34ms for MDP);
 → adopted transform is expensive on CPU-based implementation

9,400 lines of Java, over 7,000 of which are devoted to operator implementation, along with an additional 1,000 lines of JS and HTML for the front-end and 7,600 lines of Java for diagnostics and prototype pipelines.

Implementation on Java:

- + high productivity
- + support for higher-order functions
- + popularity in open source

- performance overhead w/ the Java virtual machine (JVM)

	LS	TS	ES	AS	FS	MS
Throughput (points/sec)	7.86M	8.70M	9.35M	12.31M	7.05M	6.22M
Speedup over Java	7.46×	24.11×	5.24×	16.87×	5 32×	$17.54 \times$

Streaming and Specialized Analytics

- Storm, StreamBase, IBM Oracle Streams (and so on) provide infrastructure for executing streaming queries
- MDP aims to provide a set of high-level analytic monitoring operators where dataflow is a means to an end rather than an end in itself
- Inspirations from specialized engines: Gigascope (network monitoring), WaveScope (signal processing), MCDB (Monte Carlo-based operators), and Bismarck (extensible aggregation for gradient-based optimization)
- Even though many commercially-available analytics packages provide advanced analytics functionality, none provides streaming explanation operations as in MacroBase.

Streaming and Specialized Analytics

- Storm, StreamBase, IBM Oracle Streams (and so on) provide infrastructure for executing streaming queries
- MDP aims to provide a set of high-level analytic monitoring operators where dataflow is a means to an end rather than an end in itself
- Inspirations from specialized engines: Gigascope (network monitoring), WaveScope (signal processing), MCDB (Monte Carlo-based operators), and Bismarck (extensible aggregation for gradient-based optimization)
- Even though many commercially-available analytics packages provide advanced analytics functionality, none provides streaming explanation operations as in MacroBase.

Classification

- A large amount of technique for classification and outlier detection emerging from statistics, machine learning, data mining, etc.
- Statistical outlier detection for stream volume techniques will produce a large stream of outlying data points, thus being coupled with streaming explanation.
- MacroBase is compatible with other detectors from Elki, Weka, RapidMiner, and OpenGamma.

Data Explanation

- Existing explanation techniques: decision-tree, Apriori-like pruning, grid search, data cubing, Bayesian statistics, visualization, causal reasoning, etc.
- none of the above techniques executes over streaming data or is efficient at the large dataset scale. Several exhibit runtime exponential in the number of attributes.
- MacroBase's explanation techniques take advantage of sketching and streaming data structures and adapt to the fast data setting, with compatibility to the existing explanation techniques.

CONCLUSION AND FUTURE WORK

MacroBase is

- a new analytics engine designed to prioritize attention in fast data streams
- a flexible architecture with streaming classification and data explanation to deliver interpretable summaries of important behaviors in fast data streams
- specifically optimized for high-volume, time-sensitive, and heterogeneous data streams

Future: new functionalities to expand domain supports and integrate more features by leveraging the flexibility provided by MacroBase's pipeline architecture.

THANK YOU!

MacroBase: Prioritizing Attention in Fast Data Researcher's Perspective by: Cuong (Johnny) Nguyen

Summary of MacroBase

 First dataflow engine architecture to combine both streaming outlier detection and group-level explanation of outliers for time series anomaly detection by proposing SQL-like operators for these tasks

 Effective on large and fast dataflows, capable of processing several hundred thousands - 2.5 million data points per second on real datasets

Extensions of MacroBase

- Quantile estimation and explanation a common task for analysis of fast dataflow

 More fine-grained analysis between multiple classes of data points given a target variable, beyond the inlier vs outlier distinction presented in the paper

- **E.g:** Finding attributes that could explaining the difference in power consumption between devices in 75th percentile vs devices in the 90th percentile

Follow-up Research: MesoBase

- Adds a "quantile" operator to the MacroBase analytics pipeline, allows for accurate and timely estimation of quantiles for all data points given a target variable on fast data streams (see Quantiles on Streams, Buragohain and Suri 2009)

- Adapt the explanation framework presented in MacroBase for comparison between quantiles

- Evaluate the "quantile" operator on data streams similar to the evaluation method of MacroBase

MacroBase A Peer Review

Reviewer: Eric Martin

Main Contributions

- First fast data stream analytics engine and pipeline architecture combining streaming outlier classification with streaming data explanation.
- A new type of exponentially damped reservoir sampler (Adaptable Damped Reservoir) which can operate of arbitrary window sizes.
- An optimization for calculating relative risk of outliers over inliers exploiting class imbalances between the two in fast data.
- A new heavy-hitters sketch which leverages more memory to provide quicker updates at higher accuracy. (Amortized Maintenance Counter)

Strong Points

- Leverages existing concepts in pipeline and data processing architectures which increasing the likelihood of adoption. **Hard to implement but easy to plug in.**
- Introduces a type system which...
 - Promote the importance of classification and explanation as data types.
 - Creates a extendable system where new operators can be added/optimized.
 - Production case studies are proofs of concept.
- Create new types of samplers, sketches, and optimizations based on the inputs and outputs of each operator. **Sum of the operators is greater than their parts.**
- Test the system with both simulated and real world data.

Weaknesses

- Does not provide an UI visual demonstrating a stream of explanations can be used a useful alert system.
- Did not extend the measurement noise experiment to more devices to identify statistical limit of classifier despite performance degradation.
- The description of the Real-World Dataset Accuracy involving TCP-C and TPC-E benchmarks for identifying bad OLTP servers was unclear.
- There was no breakdown of overhead b/w operators in a streaming EWS context.
- AMC may not be deployable in embedded environments.

MacroBase Demo

Database URL:	localhost	submit
Base query:	SELECT * FROM mobile_data;	submit
Connected to lo	calhost database!	

Schema Informa	ation and Selection	sample	reset clear
Explanatory Attribute?	Target Metric? Lo/Hi	Name	Туре
+		app_version	varchar
+		avg_temp	numeri
+		battery_drain	numeric
+		firmware_version	varchar
+		hw_make	varchar
-		hw_model	varchar

metrics

attributes

MacroBase Demo

Base query:	SELECT * FROM mo	obile_data;	submit
Connected to lo	ocalhost database!		
Schema Informa	ation and Selection	sample	reset clear
Explanatory Attribute?	Target Metric? Lo/Hi	Name	Туре
~		app_version	varchar
+		avg_temp	numeric
+		battery_drain	numeric
+		firmware_version	varchar
~		hw_make	varchar
		hw_model	varchar
+		record_id	int8

DFF: Relational Interface

SELECT * FROM (SELECT * FROM logs WHERE crash = true) crash_logs DIFF (SELECT * FROM logs WHERE crash = false) success_logs ON app_version, device_type, os COMPARE BY risk_ratio >= 2.0, support >= 0.05 MAX ORDER 3;

How's MacroBase used?

Skype Android Send message success ratio

Anomalies 4 found	Comparison: Status - FAILED_TO_SEND versus SENT When Status is FAILED_TO_SEND, 3		Show
Comparison: Status - FAI FAILED_TO_SEND vs SENT			25
Distributions	segments have highe	r population (Count)	
By Connectivity Type Top 10 values (Count)	Segment	Count	20
By Message Type 6 values (Count)	Message Type = Photo_Sharing	16 X	15
Outliers	Connectivity Type	2 X	
Comparison: Status - FAI FAILED_TO_SEND vs SENT	= 2G Connectivity Type	22%	10
iplits	= 50		
By Connectivity Type ov Top 10 values (Count)	Dimension Status	~	5
By Message Type over ti	Select dimension value	le	
6 values (Count)	FAILED_TO_SEND	~	
Trends			
Week over 4 Weeks trend Comparison with 4 weeks ago			
~~			

MacroBase's backstory The SIGMOD submission was rated "best of conference" But the previous submission was rejected with low ratings What changed?

Next class

Slice Finder: Automated Da Authors: Andrew Archaeologist: Qiandong Practitioner: Bojun

Slice Finder: Automated Data Slicing for Model Validation