
CS 8803-MDS
Human-in-the-loop Data
Analytics
Lecture 14
10/10/22

1

Logistics

Part I survey:
https://forms.gle/B8zFUZN148YADBGh7
Vote on your favorite/least favorite papers!

Project proposal grade to be released

2

https://forms.gle/B8zFUZN148YADBGh7

Interactive computing
Examples:

word processors
spreadsheets
Jupyter notebook

3

“An environment in which users execute
code, see what happens, modify and
repeat in a kind of iterative conversation
between researcher and data.”

4

https://bids.berkeley.edu/events/project-jupyter-architecture-and-evolution-open-platform-modern-data-science

5

https://bids.berkeley.edu/events/project-jupyter-architecture-and-evolution-open-platform-modern-data-science

6

https://bids.berkeley.edu/events/project-jupyter-architecture-and-evolution-open-platform-modern-data-science

7

How people use notebooks

8

Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and
Explanation in Computational Notebooks. CHI ‘18.

Reproducibility in notebooks
A 2019 study [1] found that just 24% of 863,878 publicly available
Jupyter notebooks on GitHub could be successfully re-executed,
and only 4% produced the same results.

“Notebooks are messy. You write stuff, you keep old crusty code
behind, and it’s hard to kind of figure out which cells to execute in
which order, because you were trying different things.”

9

[1] J. F. Pimentel et al. A Large-Scale Study About Quality and Reproducibility of Jupyter Notebooks

Today’s class

10

Towards Effective Foraging by Data Scientists to Find Past
Analysis Choices

Author: Myna
Reviewer: Tanya, Siddhi
Archaeologist: Sahil
Practioner: Cangdi

https://dl.acm.org/doi/10.1145/3290605.3300322

11

Towards Effective Foraging by

Data Scientists to Find Past

Analysis Choices

Mary Beth Kery, Bonnie E. John, Patrick O’Flaherty,
Amber Horvath, Brad A. Myers

Presented by Myna Prasanna Kalluraya

Why is access to history important?

● Working with data is ubiquitous in all fields of science
and industry.

● Numerous iterations behind every data-driven
decision.

● It is necessary to understand the reasoning behind
every decision made during the process.
- “Why did I discard this data feature from my
model?”

Verdant

● Tool to aid data scientists in examining the history of their
work. The focus of this system is to work with
computational notebooks.

● Verdant is a JupyterLab extension that automatically
records history of all experiments that are run in a Jupyter
notebook.

● We investigate support for the specific challenges that data
scientists face around question-answering from history.

● Foraging in source code:
• IFT is based on the analogy of an animal deciding what

to eat, where it can be found and the best way to obtain
it.

• Predators, prey, patches.
• Design uses IFT to provide foraging cues like date,

version previews, and diff highlighting.

• Version Control:
• Git
• Google’s Colaboratory project.
• We focus on foraging and finding.

Background

Three use cases identified:

● Data scientist using their code history to find intermediary
results.

● Data analyst using history to justify the model to a colleague.

● Process transparency - for instance, a professor
understanding the approach to the solution by a student.

Design Use Case

● Version model “lilGit” based on Git and older version of
Verdant.

● In Git, developer can only access history in 2 levels of
granularity:
- list of commits of the entire project.
- versions specific to when a particular file was

changed.

● Git blame, grep and log have drawbacks.

Design For Versioning Artifacts

● A computational notebook is broken down into:

● This tree history structure is is saved in a single JSON
.ipyhistory file, next to the .ipynb file.

● This makes it easily portable with or without the history file.

lilGit

● Versioning Procedure:
-

Step 1. Notebook is loaded
Step 2. User makes an edit
Step 3. Notebook-level event

Step 4. Resolve - Generate or Match
Step 5. Commit
Step 6. Save to file

lilGit

Design for Improved Foraging
● Three tabs: Activity, Artifacts, Search

● Activity Tab

https://dl.acm.org/doi/10.1145/3290605.3300322

Design for Improved Foraging
● Artifacts Tab

Design for Improved Foraging
● Search Tab

Design for Improved Foraging

● Ghost notebook

Evaluation of Verdant

● Primary goal: to gather data about how the features of Verdant
assist or hinder data scientists.

● Study conducted at the JupyterCon2018 conference.

● Materials Evaluated:
- Verdant JupyterLab Extension
- Notebook
- Tour
- Tasks

Evaluation of Verdant
● 16 experienced data scientists completed 15 tasks across 4 task

categories.

Quantitative Analysis

Qualitative Analysis

● Usability analysis exploring the different features of the
Verdant UI.

● Based on analysis, the paper focuses on fixing 3 areas:
○ Confusion about how to navigate within Verdant.
○ The need for excessive scrolling.
○ Participants resorting to brute-force looking through ghost

books.

Future Work

● Future work includes:
○ Bug fixes.
○ Tweaks in UI elements.
○ More areas of redesign in the UI.
○ Smoothen the transition through search and filter strategies.

● Long term studies are to be conducted to fully evaluate the
benefits of Verdant in a realistic scenario.

Thank you.

Archeologist Presentation

Excavated by: Sahil Ranadive

Summary

● The paper presents an effective tool to forage through the work done by a
data scientist in the past

● It adds 3 key features to the existing tool (Verdant):
○ Activity tab
○ Artifacts tab
○ Search

● It also provides versioning through lilGit

Past Work? Theories Used!

● One of the core additions that the authors make to Verdant as described in
this paper (in addition to better versioning via lilGit) are adding better
visualizations/methods for “Foraging” through past work.

● Ideas for this are taken from Information Foraging Theory (book by Peter
Pirolli) - rooted in biology!

● What is Information Foraging Theory?
○ “Explain and predict how people will best shape themselves for their information environment

and more importantly

○ How information environments can be best shaped for people”

Information Foraging Theory

Hunts for

Predator Prey

in

Environment

Putting IFT in context

● The theory explains and predicts how people navigate in response to the
information in their environment (in this case, how a user navigates through
the enormous code history generated while using Jupyter notebooks).

● IFT has proven particularly helpful in explaining what makes for an effective
Web design (i.e., such that users can find their desired content easily and
efficiently) and has a track record of successfully predicting how people will
seek information on the Web. ex: the paper introduces “cues” such as dates,
previews etc in each of the tabs to enable users to forage effectively.

And the paper does much more…

● In the activity tab:
○ Events are displayed in the Activity tab as a chronologically ordered stream so that the user

can visually scan down to the rough date and time that constitutes “earlier today”
○ All events that share the same notebook version are chunked into the same row. If each event

were to have its own row in the stream, the user would need to scroll a long way to get a
notion of what had occurred within just a few minutes.

● In the artifacts tab:
○ Summarizes each cell artifact of the notebook using a single line, along with the number of

versions it has had, for a quick way to see the cell histories, much like a table of contents
○ Mimic “style inspector” in web design to create a “history inspector”

Looking Ahead… What can be improved?

● Verdant enables “Search” to find code snippets that may have been deleted
by going through artifacts.

● But, it does not list them all(more importantly doesn’t rank) since

“We explored showing all results from all artifact types sorted chronologically, but this
led to a glut of information for the user to scroll through, and did not perform well in the
evaluation. Thus , the Search results are now chunked by artifact type and by artifact ID
(Fig. 7) to lower the amount of reading and scrolling required.”

● Can the search itself be made stronger?

NBSearch

● NBSearch powers semantic code search in notebook collections and
interactive visual exploration of search results.

○ [What is semantic code search?

retrieving relevant code snippet given a natural language query. Different from typical
information retrieval tasks, code search requires to bridge the semantic gap between the
programming language and natural language]

● NBSearch utilizes the language model to process the query and retrieve
search results (i.e., a collection of relevant cells from multiple notebooks) by
searching in the semantic space of descriptors based on similarity and then
retrieving associated code segments based on the code-descriptor pairs.

● The paper also presents a UI tool for interactive visualization, NBLines, which
reveals both intra- and inter-notebook relationships among cells

Thank You

Towards Effective Foraging by
Data Scientists to Find Past
Analysis Choices

Industry Practitioner Review: Cangdi Li

Background
-- Jupyter is a free, open-source, interactive web tool known as a
computational notebook that most data scientists use.
-- A “data scientist” can be anyone, from an engineer to a chemist to a
financial analyst, to a student.
-- Jupyterlab provides a list of extensions and tools that help user with
better jupyter notebook experience.

-- This paper provides a novel extension to the current version control tool-
--Verdant, and re-implements it to be an extension in Jupyterlab, it helps
data scientist examine the history of their work more efficiently by
automatically saving all important user events and results. Verdant also
enables visualization and version comparison that provides better user
experience.

Quick demo from author
Using version inspector of Verdant to check the history of a
specific code block, including revision details, results, and so
on.

Practical use of Verdant

• Firstly, this paper is providing an extension of a current tool
library in Jupyter, it’s definitely of practical value to apply.

• We will evaluate it in the following perspective:

• How effective is this tool? Is it easy to setup and use?
• Compare with similar tools
• Who should use it?

How effective is this tool?
Is it easy to setup and use?
• Verdant is supported in Jupyterlab, a well-known extension

of Jupyter notebook, thus easy to install and setup.

• Rather than a basic version auto-save functionality, the
activity/artifacts-inspection option in the tool could
significantly help user to focused more on approaching final
result, with no fear of losing track of intermediate progress
and result, because user can always perform
search/backtrace to reasoning their path along the way of
getting the solution.

Continue..

• However, there’s some drawbacks of Verdant:

• It is a bit complex to use and people needs tie to learn.
• There’s some bugs in the tool.
• Since the history information stored in Verdant could be

huge in some extreme case, it is not sure if Jupyter can
handle this much data and still be stable. User might want
to drop some detail information in this case.

Compare with similar version tools in Jupyterlab

Compare with other version tools in Jupyterlab
-----Git related extensions:
Git extension, GitHub extension
and GitLab:

Pros: It’s just like git, easy to
understand and use.

Cons: It does not auto-save all
the history, only works like a
manual commit PR tool, thus not
friendly if you want to backtrace
any intermediate results that you
tried but didn’t save.

Compare with other version tools in Jupyterlab
-----jupyterlab_autoversion
Pros: Enhanced checkpoints,
versioned and persistent
between restarts on every save.

Cons: It only provides a basic
history auto-save function for
each block, no search or
visualization enabled, no results
saved.

Compare with other version tools in Jupyterlab
-----neptune-notebooks
Pros: Enables versioning of each notebook and comparison
between different versions
Cons: It does not provdes a way to auto trace all actions and
store the result, it does not provide searching options.

Conclusion

We look at some similar version tools in the market, and it seems that
Verdant is the only one of its kind, which provides a bunch of techniques
such as versioning, foraging, and searching with visualization. Although it
has some bugs, it does not affect common use of the tool, and it’s still
under continue developing.
Another concern is that Verdant is considered to be a complex tool and
user need to spend time understanding it, if the user only wants to do
basic versioning and comparison, Neptune is a great choice, speaking of
auto-saving the checkpoints, jupyterlab_autoversion is also a simple tool
to use.
That being said, we believe Verdant is more for professional data scientist
or researchers who works on big projects and need a way to track and
autosave all intermediate info for them to look back, reasoning and making
decisions.

Towards Effective Foraging by Data Scientists to
Find Past Analysis Choices

Peer Review

Reviewer: Tanya Garg

Summary
➔ A new release of the Verdant tool for effective data foraging by using

algorithmic and visualization techniques for notebook code environments.

➔ Develops a new version control tool, lilGit, and addresses three artifacts
namely: Markdown Cell Artifact, Code Cell Artifact and Output Artifact.

➔ Offers users three ways to look into their logs : Activity tab (time-based
change log), Artifact tab (location based change log) and Search Tab
(keyword based filtering)

Strong Points
➔ Add to Git by allowing data scientists answer important heuristic questions

such as why was a feature discarded by providing exploratory features for
non-code artifacts.

➔ Focuses on foraging and finding rather than just exploring through the history.
➔ Provides immense flexibility to the user by providing three different types of

data foraging strategy.
➔ Gives a ghost notebook feature with prominently marked changed cells to

look at older versions of the full notebook.
➔ Built as an extension for an open-source environment.

Weak Points
➔ Did not use a strong evaluation method: Small sample space and done in a

hurried manner.
➔ Number of bugs and confusing UI for new users.
➔ Some users conveyed that version control is not recommended in their

company for data analytics tasks.
➔ No evaluation done with trained data scientists with considerable amount of

support and time to explore the tool.
➔ No evaluation done on the improved version of Verdant after addressing the

above problems.

Weak Accept!

Review:

Towards Effective Foraging by Data Scientists to Find Past
Analysis Choices

Siddhi Pandare

Summary - Contributions

1. The paper proposes Verdant, an open-source extension to
JupyterLab to help with logging, navigation and search within previous
versions of the notebooks.

2. Verdant automatically records the history of cells and outputs in
an .ipyhistory file alongside the notebook.

3. The activity pane shows a stream of live updates and edits by date
and time.

4. A ghost book feature: a full previous version notebook with diff
highlighting to show what content was changed in that version.

Strong Points

1. It utilises data science notebook-specific artifacts, each saving its own
history consisting of both visual and text data in a hierarchy
preventing duplicates.

2. Verdant provides compact representation using well-researched
designs for the cells edited.

3. Verdant provides 3 different ways for searching requirements:
Activity tab (when and where), Artifacts tab (what and how), and
search tab.

4. Verdant is iteratively developed.

Improvements

1. There were only 16 participants in the evaluation study

a. Some had no experience with Python or Jupyter notebooks

b. No experience with Verdant

2. Decluttering the number of versions and number of ghost
notebooks.

3. Flexibility in logging for privacy issues.

4. Multi-user version control: Verdant for Google Collab.

ACCEPT

Discussion
• Is it better to do frequent background logging, or to require users

explicitly make commits/checkpoints?
• How does storing intermediate values help data scientists track

their work?
• Is the tool applicable to collaborative settings such as Google

collab?

12

Next class

13

How to make progress in research
Vectoring
Velocity

Part II topics overview

