
CS 8803-MDS
Human-in-the-loop Data
Analytics
Lecture 13
10/05/22

1

Logistics

Progress Report (1%)
due Fridays 5PM at 10/21, 10/28, 11/4, 11/11, 11/18
option to submit 4/5 and have one report double count

Next week
how to make progress in research

2

Today’s class

Auto-Suggest: Learning-to-Recommend Data Preparation Steps
Using Data Science Notebooks

Author: Bojun, Siddhi
Reviewer: Shubham, Shen En
Archaeologist: Aniruddha
Practioner: Jingfan
Researcher: Ting

3

https://dl.acm.org/doi/pdf/10.1145/3318464.3389738

4

Auto-Suggest: Learning-to-Recommend
Data Preparation Steps Using Data

Science Notebooks

Bojun Yang & Siddhi Pandare

Motivation

● Data-preparation steps like Pivot and Join need skilled users

● Automating data preparation steps can improve efficiency of the user
(technical and non-technical experts)

● Data preparation recommendation systems automate commonly used
operators

Overview

Pandas library + jupyter notebooks is commonly used for data preparation

Fig. Merge (Join) in Pandas

https://dl.acm.org/doi/pdf/10.1145/3318464.3389738

Overview

Fig. System Architecture

Github API Python tracing
Library

Join/ Merge

Problem: Given Tables T and T’ find columns (S, S’) that are likely to join.

Fig. Example of join

Proposed Solution

● Two steps:
○ Predict Join

column
○ Predict Join

type

Join: Features
● Distinct-value-ratio

○ Ratio of distinct tuples in S and S’ over total number of rows. At least one
of them should be have this ratio close to 1 (key column)

● Value overlap
○ Pairs of high value overlap are likely to be join columns.

● Value range overlap
○ Calculate the min/max range of S and S’ then calculate the overlap of the

ranges.
● Col-value-types

○ Two string columns with high overlap are likely to be join columns than
two integer columns with high overlap.

● Leftness, sortedness, single-column-candidate, Table statistics

GroupBy/Aggregate - Problem/Example

GroupBy: [Company, Year]
Aggregate: [Revenue]

GroupBy/Aggregate - Features 1

● Distinct-Value-Count: # of distinct values in C
○ GroupBy columns usually have a small cardinality

● Column-Data-Type: string, int, float, etc of data type
○ GroupBy columns more likely to use string data type

● Left-ness: how to the left of the table C is
○ GroupBy columns more likely to be near the left of the table
○ Agg columns more likely to be near the right of the table

● Emptiness: nulls in C
○ GroupBy columns tend have low emptiness

● Value-Range: min-max range of C if it is numeric
○ GroupBy columns tend to have small ranges

● Peak-Frequency: frequency of most common value in C
● Column-Names: lookup in training data to see how often it is used by each op

GroupBy/Aggregate - Features 2

GroupBy/Aggregate - Problem/Example

GroupBy: [Company, Year]
Aggregate: [Revenue]

Pivot - What does it do

Index: [Sector, Ticker, Company]
Column: [Year]
Agg: Sum
Agg Column: Revenue

Pivot - Prediction Overview

1. Predict index/header vs. aggregation columns
a. Predicting index/header columns = predicting GroupBy columns
b. Predicting agg columns = predicting agg columns

2. Predict to split index vs header (after user selects dimension columns)
a. Hard for users and typically requires many trial and errors
b. Predict affinity scores for pairwise columns
c. Formulate the problem as an optimization problem using affinity scores and solve

Pivot - Index/Header vs. Aggregation Columns

● Directly apply GroupBy/Aggregation prediction
● We choose Sector Ticker, Company, Year for index/header columns

○ All GroupBy columns are reasonable choices for pivot index/header columns
● We choose Revenue as the aggregation column

○ All Aggregation columns are reasonable choices for pivot aggregation columns

Pivot - Predict Split Index vs. Header

● Likelihood of 2 columns being on the same side of pivot (both index or both
header)
○ Regression model to learn the affinity score between any 2 pair of

columns

Pivot - Affinity Score Feature 1

● Emptiness-Reduction-Ratio

○ How much emptiness we can save by arranging Ci and Cj on the same side.
○ T(C) is unique values in column C.
○ Sector and Company: 20 * 1000 / 1000 = 20
○ Sector and Year: 3 * 20 / 60 = 1

20 sectors, 1000 companies, 3 years

Pivot - Affinity Score Feature 2

● Column-Position-Difference
○ Relative difference of position between Ci and Cj in T
○ Columns that are close to each other in T are more likely to be related and on same side of

pivot

Regression Model Training w/ Real Pivot Tables

● Pairs of columns on same side (+1)
● Pairs of columns on different side (-1)
● Predict pairwise column affinity

Pivot - AMPT Optimization Problem

● Model each column as a vertex in the graph
● Use regression model to produce affinity scores on all edges
● Affinity-Maximizing Pivot-Table:

Fully covers C

Disjoint

Non-empty

● AMPT reduces to two-way graph cut, solvable in polytime with Stoer-Wagner Algorithm

Pivot - AMPT Example

● Intra pairwise C: 0.9 + 0.6 + 0.6 = 2.1
● Intra pairwise C’: 0
● Inter pairwise: -0.1 - 0.1 + 0.1 = -0.1
● 2.1 + 0 - (-0.1) = 2.2

● Affinity scoring model + AMPT forumation
allows us to find most likely pivot

Unpivot/ Melt
Problem: Predict set of columns to collapse in Unpivot

Unpivot on
columns
2006, 2007,
2008

Compatibility score

● Compatibility score measures the likelihood of the columns being on the same
side of the unpivot

● Like affinity score we train a regression model to find the compatibility-scores

Optimization: Compatibility-maximizing- Unpivot Table
(CMUT)

Compatibility-maximizing- Unpivot Table (CMUT) :

Solution: Greedy Algorithm

Example : Unpivot
● Highest compatibility score:

2007, 2008

● Average intra-group

compatibility

= 0.9

● Average compatibility

between selected and

unselected columns

 = (0.1 * 6 + 0.9 * 2)/ 8

 = 0.3

● Objective function = 0.6

● Compatibility score:
2006 with 2007 &
2008

● Average intra-group
compatibility = 0.9

● Average compatibility
between selected
and unselected
columns = 0.1

● Objective function =
0.8

Example : Unpivot

Predict Next operator

● At timestamp t_i, predict next likely op at time i+1 given previously invoked
ops and input table at time i

Evaluation: Dataset

● The data set was created by replaying and instrumenting a large number of

Jupyter Notebooks.

● Filter identical or uninformative invocations.

Evaluation metrics

● Precision@K = proportion of relevant predictions in K in the top-Ks

● Normalized Discounted Cumulative Gain (NDCG@K)

where,

Evaluation - Join

● Top methods from literature, bottom from commercial systems
● ML-FK, PowerPivot, Multi, Holistic designed for foreign key joins

Evaluation - Join Feature Group Importance

● Left-ness and val-range-overlap more important features for ad-hoc joins by
data scientists in the wild compared to val-overlap

○ Suggests accidental val-overlap may be common in practice

Evaluation - Join Type

● Vendors default to use inner-join → 78% of cases are indeed inner-joins

Evaluation - GroupBy

Evaluation - GroupBy Feature Importance

● Col-type most important - nothing new here
● Col-name-freq 2nd most important → prior knowledge on what columns are

likely GroupBy
○ After seeing enough examples, knowing that columns named “year” are Groupby and not Agg

Evaluation - Pivot - Index vs. Header

● No existing features for pivot, so compare with some related methods
● RI: how close the predicted split is to the ground-truth

○ An edge is correct if assignments of the two vertices incident to e are the same in the
prediction and ground-truth (in same cluster or not)

○ Gives partial credit to predictions close enough to ground-truth

Evaluation - Unpivot

● Compare Auto-suggest with related methods
● 90% of the columns have an overlap with the ground-truth

○ Full accuracy is 67% because of the partially correct marked as incorrect

Evaluation - Predict Next Operator

● Auto-Suggest = RNN + Single-Op

Conclusion

● Data driven approach to learn how data scientists manipulate data
● Capture best-practices from notebooks to recommend data preparation steps

for non technical users in self service data prep software

Thank you

Auto-suggest: Learning-to-Recommend
Data Preparation Steps Using Data

Science Notebooks

Summary

● Leveraged collective wisdom of data scientists for “self-service” data preparation

● Crawled huge number of data science notebooks from Github

● Recommends next steps to help speed up data preprocessing coding
○ Single Operator Prediction

■ Join column prediction
■ Group By/Aggregation
■ Pivot
■ Unpivot

○ Next Operator Prediction : (i + 1)th step in the pipeline

Strengths

● Comprehensive analysis of how and which functions are used (eg: sum vs
average)

● Detailed description of how prediction is done for all operators
● Extracted detailed information of function calls
● Notebook repair

○ Installed possible packages based on the errors
○ Found missing files

● Kept track of sequence of operations using a data-flow graph
● First attempt at harvesting invocations of diverse table-manipulation operations
● It’s a generic approach that can be potentially deployed on enterprise systems

Weaknesses / Open questions

● No information about compute used & time taken for crawling and running the
offline system

● Would updates to already crawled notebooks be used?
● How are different python versions handled?
● Default parameters aren’t recorded but they can change even in minor

version upgrades
● Multiple files with same name and same distance from the root
● How do they verify correctness of the files?
● Some notebooks may be malicious and might corrupt the system

Weaknesses / Open questions

● Data frames may have two or more columns with same data (or subtle
differences), how would this affect recommendations?

● Mainly focused on pandas and python
● User feedback/usage could be incorporated to supplement offline learning

ACCEPT

Review:
Auto-Suggest: Learning-to-Recommend Data Preparation Steps

Using Data Science Notebooks

Shen En Chen

Summary of Contribution

The authors of the paper proposed Auto-Suggest, a contextualized smart data preparation framework that

learns from Jupyter notebook workflow and recommends data prep operations to the user. Auto-Suggests

provides improved recommendation quality on operations supported by prior research and commercial

systems and extends its support to common but rarely supported operators such as “pivot” and “unpivot”.

Compared to other work, Auto-Suggests is capable of recommending both the columns on which an

operation should be applied and the next suitable operation given the current table. The authors developed a

suite of heuristic-based features for the regression model on each prediction task, attaining much better

performance than all baselines in most cases and discovering interesting counter-intuitive insights on the

importance of different features . Algorithmically, the authors solves the column selection problem for the

“pivot” operator in polynomial time with the Stoer-Wagner algorithm and that for the “unpivot” with a

greedy algorithm.

Strong Points

1. Auto-Suggest avoids the potential costs of data collection and labeling by leveraging Jupyter

notebooks publicly available on GitHub.

2. Auto-Suggest provides wide variety of operation predictions. It supports both single- and

next-operator prediction. For the latter, it even offers 7 different operators as recommendation

candidates.

3. Auto-Suggest outperforms all of the existing work and commercial products compared.

4. The authors framed the predictions for “pivot” and “unpivot” as Affinity Score Maximization and the

Compatibility Maximization and solved them algorithmically in polynomial time.

5. Aside from recommendation quality, the experiments shed light on the differences between

conventional wisdom and ad-hoc data preprocessing through investigating feature importances.

Opportunities for Improvement

1. The authors used the workflow in the notebooks crawled as a proxy of the ground truth. While this

saves costs and covers several different use cases, more should be investigated in the

representativeness of the collected data: is the data distribution of these notebook workflow similar to

that of the workflow of commercial products like Tableau and Power BI?

2. As powerful as the paper demonstrated Auto-Suggest to be, the framework is not publicly available.

3. On join column prediction, Auto-Suggest performs only slightly better than ML-FK. It might be able to

achieve better performance it incorporates the carefully engineered features of ML-FK.

4. For next-operator prediction, the authors did not compare Auto-Suggest against comperical systems

such as the predictive-transformation in Trifacta and smart-suggestion in Salesforce Analytics Data

Prep.

Overall Evaluation

Weak Accept

AUTO-SUGGEST: LEARNING-TO
RECOMMEND DATA

PREPARATION STEPS USING
DATA SCIENCE NOTEBOOKS

ARCHEOLOGIST PRESENTATION

ANIRUDDHA MYSORE

THEMES IN THE PAPER

Data-preparation
operation

recommendation

Data mining open-
source code,

specifically Jupyter
notebooks

RECOMMENDING DATA CLEANING OPERATIONS: THE
TIMELINE

2001 – Potter’s wheel

2011 - Wrangler

2020 – Auto-Suggest

2021- Auto-Pipeline

2022 - Machine
Learning and

Data Cleaning:
Which Serves

the Other?

[PRIOR WORK] 2001 – POTTER’S WHEEL
• Interactive data cleaning system – immediate

feedback rather than batched transforms

• Infers structure of data

• Automatic discrepancy detection on applying
transform

[PRIOR WORK] 2011 – WRANGLER

• Interface for transforming data + declarative
transformation language

• Automatically suggests new operations

• Dataset – past user interactions on the same
data

[LATER WORK] 2021 – AUTO PIPELINE

• Combine multiple operators

• Table operators: Join, Group By, Pivot

• String operators: Split, substring, Index

• Synthesize end-to-end pipeline using
Reinforcement Learning

• “by-target” paradigm

• Dataset - Jupyter notebooks

[LATER WORK] 2022 – MACHINE LEARNING & DATA
CLEANING – WHICH SERVES THE OTHER

Auto-Suggest: Learning-to-Recommend Data
Preparation Steps Using Data Science Notebooks

Researcher: Ting Yu

What is proven to be successful?

- Jupyter notebooks offer valuable insights into how data scientists work. The
paper provides a hands-on framework on how to put such notebooks crawled
from GitHub into use.

- Single-operator prediction: useful heuristic metrics that are proven to be
effective in predicting single-operators

- Next-operator prediction: the value of using the sequence of preceding
operators in improving predictions is proven when compared with
single-operator prediction based purely on characteristics of input tables

Next step - Simplify further for non-technical analyst or auto ETL

Bit:

- Predicting a single data preparation step

Given:

- Original data from online Jupyter notebooks can be found.

Flip:

- Auto-generate a complete data preparation pipeline given tables at interest.
- We may do this by find notebooks that work on a “similar tables” (defined by

some distance metric based on table characteristics).

Auto-Pipeline: Synthesize Data Pipelines By-Target Using Reinforcement Learning and Search

Next step - Focus on other parts of Jupyter notebooks

Bit:

- Predictions help automate data preparation stage

Given:

- Many jupyter notebooks include code on data import, serialization, visualization using
a few standard libraries.

Flip:

- Automate other stages such as the data exploration stage.
- In particular, we may predict parameters of matplotlib parameters to allow building

graphs with tickers, titles, axis, graph types without having to specify them, all within
one command “plt.autoplot(Data)”.

Next step - Generalize the method to other tools

Bit:

- Prediction for next Pandas operation

Given:

- Pandas dataframe is a rich super-set of SQL

Flip:

- Predict the next SQL query with SQL history.
- We may also translate Pandas into SQL queries, loosely treating all the

notebooks the SQL history.

CS8803
Auto-Suggest: Learning-to-Recommend Data

Preparation Steps Using Data Science
Notebooks

Practitioner role: Jingfan Meng

10/5/2022

Why we need "self-service" data preparation?
• Data preparation is "the most time-consuming step in analytics".
By Gartner

Two reasons:
• It takes expertise knowledge to know which operations to perform,

and takes many trials to make a decision.
• If a bad decision is discovered at later stages, rolling back means a lot

of wasted effort.

Why we need "self-service" data preparation?
• Auto Suggest learns how expert data scientists prepare data from

existing Pandas scripts, and makes intelligent suggestions on which
operation to perform on the tables.

• Two-fold benefit to our Data Analytics group:
• Less errors and increased productivity.
• Less training effort on newcomers.

Join, Group-by, Aggregation
• They are most widely-used operators in our codes. Hence, the

advances will significantly improve productivity.

• Auto Suggest predicts join columns and group-by (dimension)
columns than our current tool.
• It also has a new feature: Predict the join type (inner/outer).

Pivot and Unpivot
• Although not as frequent, these are the hardest operators for analysts.
• Some colleagues complain that they always have too many NULLs in

the tables.
• Auto Suggest saves the day.

Discussions
• Multi-operator prediction?
• We can develop this feature after we finish and pilot single-

operator predictions.
• Which training data to use?
• Open source notebooks: Readily available, large in volume, but

might not best suit our data and tasks.
• Corporate code: Best suited for our task, but limited in volume.

Need adaptation and permission.

Discussions (cont.)
• What if our analysts become reliant on Auto Suggest rather than

domain knowledge?
• This is a legitimate issue. We need to know in which cases Augo

Suggest can be improved by our domain knowledge. To this end, a
possibmonitor feedbacks from users to see if this is an issue.

Thanks!

Contribution/Strengths
• Built a system to crawl jupyter notebooks and data pipelines at scale – could

handle error cases including missing packages and absolute path issues.
• First data driven operator predictor which relies on real user data.
• Experiments also shed light on the differences between conventional wisdom

and ad-hoc data preprocessing; for example, left-ness and val-range-overlap
are more useful than value-overlap in predicting join columns.
• Extends prior work in automated suggestions to new operators such as pivot

and unpivot

5

Limitation/Weaknesses
Training and maintenance challenges
• How frequently one needs to gather data to ensure the models

are up to date with current data science trends
• Replaying is costly and not always feasible (for lack of data). It is

possible to avoid replaying by analyzing the scripts themselves, or
to analyze these features without actually running on real data, or
to use some fictitious data when the original data is unavailable?
• If users come to rely on these predictions in the same way users

rely on the results of a Google search, then there could be a
chance that the incorrect parameters and operators could be
routinely chosen reinforcing bad habits.

6

Limitation/Weaknesses
Bias/error in data
• Publicly crawled code can contain many bugs, especially since the authors make no

attempt to curate their sources.
• Did not collect default parameters of methods
• It would also be interesting to examine the purposes of notebooks used as the training

data and analyze any potential biases of using GitHub as the only crawling source. For
example, are Trifacta users different from Pandas users as a result of having different
user interfaces? If so, how will this difference affect the prediction task?

• Many commercial systems use black-box algorithms that are likely trained on data
analytics workflows performed on their systems, there might exist a distribution shift in
their training data and test data of Auto-Suggest. The poor performance of these
systems might be attributed to their poor robustness on distribution shift instead.

• Some features (such as leftness) seems arbitrary. While it is possible that some users
are prone to group-by left columns, I think it is more of a matter of personal preference.
Using such features will introduce some preference bias to the prediction model. 7

Extensions/Open Questions
• Integrating the system with popularly used IDEs and collaborative

editors for notebooks could be another future work (like GitHub
copilot).
• This can also be extended to have a human-in-the-loop approach

where the feedback from the user is then taken into account to
improve the system recommendations.
• It might not be the most practical to recommend operations prior to a

user actually exploring the data. So one open question I had was
whether Auto-Suggest can be used as a standalone tool or requires
some level of data exploration beforehand.
• Can you precompute suggested operations to reduce latency to

users?

8

Next class

9

Towards Effective Foraging by Data Scientists to Find Past
Analysis Choices

Author: Myna
Reviewer: Tanya, Siddhi
Archaeologist: Sahil
Practioner: Cangdi
Researcher: Ting

https://dl.acm.org/doi/10.1145/3290605.3300322

