
CS 8803-MDS
Human-in-the-loop Data 
Analytics
Lecture 12 
10/03/22 

1



Logistics
Grading 

<= 300 words per answer for paper reviews 
project proposal grades will be released by next week 

Project timeline
project update presentation 10/31 
Assignment 2-6: progress report (1% each)

due Fridays 5PM at 10/21, 10/28, 11/4, 11/11, 11/18
Assignment 7: evaluation plan (5%)

due Friday 5PM at 11/18 
Next week:

how to make progress in research? 

2



Today’s class 

Finding Related Tables in Data Lakes for Interactive Data 
Science

Author: Qiandong, Shen En
Reviewer: Vishnu
Archaeologist: Yanhao
Practioner: Haotian

3

https://www.cis.upenn.edu/~zives/research/Finding_Related_Tables_in_Data_Lakes_for_Interactive_Data_Science.pdf


4



Motivation

● Many data science applications build on data lakes today

● Data Lakes
○ A central repository to store any types of data 

○ Schema-on-Read

○ Easy to store data, low storage cost



Motivation

● Data scientists do lots of repeated work every day
○ Importing and cleaning today’s data 

○ Data wrangling and exploration on public datasets



Motivation

● Data scientists do lots of repeated work every day
○ Importing and cleaning today’s data 

○ Data wrangling and exploration on public datasets

Data Lake

Data 1

Data 2

Data 3

Data 4



Motivation

● Data scientists do lots of repeated work every day
○ Importing and cleaning today’s data 

○ Data wrangling and exploration on public datasets

● Same data might already exist 

Data Lake

Notebook Data 1

Data 2

Data 3

Data 4

Import 
data, 
Create 
Schema…



Motivation

● Data scientists do lots of repeated work every day
○ Importing and cleaning today’s data 

○ Data wrangling and exploration on public datasets

● Same data might already exist 

● Data lakes do little to help user find related data
○ Users don’t know what data is available, or unable to trust what they find

○ Users reinvent schema - redundant work, data inconsistency

Data Lake

Notebook Data 1

Data 2

Data 3

Data 4

Import 
data, 
Create 
Schema…



Motivation

● What if we could help users find related data?
○ Promote reusable units of data and processing

Data Lake

Notebook

Import 
data, 
Create 
Schema…

Data 1

Data 2

Data 3

Data 4

Search 
Framework



Motivation

● What if we could help users find related data?
○ Promote reusable units of data and processing

● Goal: Build a search framework to find related tables 

Data Lake

Notebook

Import 
data, 
Create 
Schema…

Data 1

Data 2

Data 3

Data 4

Search 
Framework



Motivation

● Based on Jupyter Notebook

● Considering 

○ source data
○ cells
○ intermediate data

● Github Copilot for suggesting tables 

Are you looking for df_xxx?



Use Cases

● Augmenting training / validating data

○ Union of two tables

● Linking data

○ Join of two tables

● Extracting machine learning features

○ Adding new columns to the original table

● Cleaning data

○ Fill in missing values in the original table



Use Cases

● Augmenting training / validating data

○ Union of two tables

● Linking data

○ Join of two tables

● Extracting machine learning features

○ Adding new columns to the original table

● Cleaning data

○ Fill in missing values in the original table



Use Cases

● Augmenting training / validating data

○ Union of two tables

● Linking data

○ Join of two tables

● Extracting machine learning features

○ Adding new columns to the original table

● Cleaning data

○ Fill in missing values in the original table



Use Cases

● Augmenting training / validating data

○ Union of two tables

● Linking data

○ Join of two tables

● Extracting machine learning features

○ Adding new columns to the original table

● Cleaning data

○ Fill in missing values in the original table



Problem Statement
Notebook

Cell

Cell

Use Case Relationess 
Function

c
1

Rel
1

… …

1. query(T, c)

Searching Framework
(Juneau)

Data Lake
Search related tables for 
table T with use case c



Problem Statement
Notebook

Cell

Cell

Use Case Relationess 
Function

c
1

Rel
1

… …

1. query(T, c)

Searching Framework
(Juneau)

Data Lake
2. (T, Rel

1
)Search related tables for 

table T with use case c



Problem Statement
Notebook

Cell

Cell

Use Case Relationess 
Function

c
1

Rel
1

… …

1. query(T, c)

Searching Framework
(Juneau)

Data Lake
2. (T, Rel

1
)

3. Return k most related tables

Search related tables for 
table T with use case c



An Example - Feature Extraction

● Feature extraction
○ Produce tables that preserve inputs’ keys and other columns, but add new columns



An Example - Feature Extraction

train.csv

raw_data

pd_readcsv

data_clea
ner

fillna

first_
name

sex

data

last_
name

pd_concat

pd_concat
pd_concat

pd_concat

train.csv

raw_data

pd_readcsv



Feature Extraction - Table Overlap

Row Overlap train.csv

raw_data

pd_readcsv

data_clea
ner

fillna

first_
name

sex

data

last_
name

pd_concat

pd_concat
pd_concat

pd_concat

train.csv

raw_data

pd_readcsv



Feature Extraction - Table Overlap

Schema Overlap
train.csv

raw_data

pd_readcsv

data_clea
ner

fillna

first_
name

sex

data

last_
name

pd_concat

pd_concat
pd_concat

pd_concat

train.csv

raw_data

pd_readcsv



Feature Extraction - New Information

New Columns
train.csv

raw_data

pd_readcsv

data_clea
ner

fillna

first_
name

sex

data

last_
name

pd_concat

pd_concat
pd_concat

pd_concat

train.csv

raw_data

pd_readcsv



Feature Extraction - New Information

Provenance
train.csv

raw_data

pd_readcsv

data_clea
ner

fillna

first_
name

sex

data

last_
name

pd_concat

pd_concat
pd_concat

pd_concat

train.csv

raw_data

pd_readcsv



Full Suite of Basic Measures

1. Row/Column Match
○ Measures the row overlap and column overlap between two tables S and T

2. Row/Column Information Gain
○ Measures the new row rate and new column rate of T compared to query table S

3. Shared Provenance
○ Measures the purpose/workflow similarity of two tables S and T based on variable dependencies

4. Null Value Decrement
○ Measures the decrease in null value in T compared to query table S

5. Description Similarity
○ Measures the similarity of table metadata such as problem type, text about the workflow, etc.



Full Suite of Basic Measures

Use Cases
Row 

Match
Column 
Match

Row
Info Gain

Column 
Info Gain

Shared 
Provenance

Null Value 
Decrement

Description 
Similarity

Data 
Augmentation

⬆⬆ ⬆⬆ ⬆⬆ ⬆

Feature Extraction ⬆⬆ ⬆⬆ ⬇⬇ ⬆

Data Cleaning ⬆⬆ ⬆⬆ ⬆ ⬆ ⬆

Linkable Data ⬆⬆ ⬆

⬆: the higher the better
⬇: the lower the better



Example: Assume our goal is to find the top-2 (k = 2) candidate tables T
j

Top-K Search: Threshold Algorithm



Step 1: For each measure M
i
 ,  order the candidate tables  T

j
  in descending order of scores

Top-K Search: Threshold Algorithm

M
1

Score

T
1

1

T
2

0.8

T
3

0.5

T
4

0.3

T
5

0.1

M
2

Score

T
2

0.8

T
3

0.7

T
1

0.3

T
4

0.2

T
5

0.1

M
3

Score

T
4

0.8

T
3

0.6

T
1

0.2

T
5

0.1

T
2

0



Step 2: Perform sequential scan of the tables, set a threshold t = sum of the scores in the scan

Top-K Search: Threshold Algorithm

M
1

Score

T
1

1

T
2

0.8

T
3

0.5

T
4

0.3

T
5

0.1

M
2

Score

T
2

0.8

T
3

0.7

T
1

0.3

T
4

0.2

T
5

0.1

M
3

Score

T
4

0.8

T
3

0.6

T
1

0.2

T
5

0.1

T
2

0

t = 1 + 0.8 + 0.8 = 2.6



Step 3: At the same time, for each  T
j
  appearing in the scan, calculate their total scores

Top-K Search: Threshold Algorithm

M
1

Score

T
1

1

T
2

0.8

T
3

0.5

T
4

0.3

T
5

0.1

M
2

Score

T
2

0.8

T
3

0.7

T
1

0.3

T
4

0.2

T
5

0.1

M
3

Score

T
4

0.8

T
3

0.6

T
1

0.2

T
5

0.1

T
2

0

t = 1 + 0.8 + 0.8 = 2.6

s
1

 = 1 + 0.3 + 0.2 = 1.5



Step 3: At the same time, for each  T
j
  appearing in the scan, calculate their total scores

Top-K Search: Threshold Algorithm

M
1

Score

T
1

1

T
2

0.8

T
3

0.5

T
4

0.3

T
5

0.1

M
2

Score

T
2

0.8

T
3

0.7

T
1

0.3

T
4

0.2

T
5

0.1

M
3

Score

T
4

0.8

T
3

0.6

T
1

0.2

T
5

0.1

T
2

0

t = 1 + 0.8 + 0.8 = 2.6

s
1

 = 1 + 0.3 + 0.2 = 1.5

s
2

 = 0.8 + 0.8 + 0 = 1.6



Step 3: At the same time, for each  T
j
  appearing in the scan, calculate their total scores

Top-K Search: Threshold Algorithm

M
1

Score

T
1

1

T
2

0.8

T
3

0.5

T
4

0.3

T
5

0.1

M
2

Score

T
2

0.8

T
3

0.7

T
1

0.3

T
4

0.2

T
5

0.1

M
3

Score

T
4

0.8

T
3

0.6

T
1

0.2

T
5

0.1

T
2

0

t = 1 + 0.8 + 0.8 = 2.6

s
1

 = 1 + 0.3 + 0.2 = 1.5

s
2

 = 0.8 + 0.8 + 0 = 1.6

s
4

 = 0.3 + 0.2 + 0.8 = 1.3



Step 3.5: We only need the top-2 tables, so we only maintain the top-2 total scores  

Top-K Search: Threshold Algorithm

M
1

Score

T
1

1

T
2

0.8

T
3

0.5

T
4

0.3

T
5

0.1

M
2

Score

T
2

0.8

T
3

0.7

T
1

0.3

T
4

0.2

T
5

0.1

M
3

Score

T
4

0.8

T
3

0.6

T
1

0.2

T
5

0.1

T
2

0

t = 1 + 0.8 + 0.8 = 2.6

s
2

 = 1.6

s
1

 = 1.5

s
4

 = 0.3 + 0.2 + 0.8 = 1.3



Step 4: Repeat Step 2 and Step 3 by:

                 (1) continuing the scan, (2) updating the threshold, (3) scale total scores of new tables 

Top-K Search: Threshold Algorithm

M
1

Score

T
1

1

T
2

0.8

T
3

0.5

T
4

0.3

T
5

0.1

M
2

Score

T
2

0.8

T
3

0.7

T
1

0.3

T
4

0.2

T
5

0.1

M
3

Score

T
4

0.8

T
3

0.6

T
1

0.2

T
5

0.1

T
2

0

t = 0.8 + 0.7 + 0.6 = 2.1

s
3

 = 1.8

s
2

 = 1.6

Updated threshold

Updated top-2 total scores: 

1. Calculate score for T
3

2. s
3

 = 1.8 is larger than s
1

 = 1.5



Step 5: Stop when all the top-2 total scores maintained ≥ threshold

Top-K Search: Threshold Algorithm

M
1

Score

T
1

1

T
2

0.8

T
3

0.5

T
4

0.3

T
5

0.1

M
2

Score

T
2

0.8

T
3

0.7

T
1

0.3

T
4

0.2

T
5

0.1

M
3

Score

T
4

0.8

T
3

0.6

T
1

0.2

T
5

0.1

T
2

0

t = 0.5 + 0.3 + 0.2 = 1

s
3

 = 1.8

s
2

 = 1.6

We have found our top-2 tables



Step 5: Stop when all the top-2 total scores maintained ≥ threshold

Top-K Search: Threshold Algorithm

M
1

Score

T
1

1

T
2

0.8

T
3

0.5

T
4

0.3

T
5

0.1

M
2

Score

T
2

0.8

T
3

0.7

T
1

0.3

T
4

0.2

T
5

0.1

M
3

Score

T
4

0.8

T
3

0.6

T
1

0.2

T
5

0.1

T
2

0

t = 0.5 + 0.3 + 0.2 = 1

s
3

 = 1.8

s
2

 = 1.6

We have found our top-2 tables

Why?



Step 5: Stop when all the top-2 total scores maintained ≥ threshold

Top-K Search: Threshold Algorithm

M
1

Score

T
1

1

T
2

0.8

T
3

0.5

T
4

0.3

T
5

0.1

M
2

Score

T
2

0.8

T
3

0.7

T
1

0.3

T
4

0.2

T
5

0.1

M
3

Score

T
4

0.8

T
3

0.6

T
1

0.2

T
5

0.1

T
2

0

t = 0.5 + 0.3 + 0.2 = 1

s
3

 = 1.8

s
2

 = 1.6

We have found our top-2 tables

Why?

If there were any table that should have 

been in the top-k list, we would have seen 

it during the sequential scan



Challenge: 

Scores requiring relation mapping are much more expensive to compute

Top-K Search: Threshold Algorithm

M
1

Score

T
1

1

T
2

0.8

T
3

0.5

T
4

0.3

T
5

0.1

M
2

Score

T
2

0.8

T
3

0.7

T
1

0.3

T
4

0.2

T
5

0.1

M
3

Score

T
4

0.8

T
3

0.6

T
1

0.2

T
5

0.1

T
2

0

t = 0.5 + 0.3 + 0.2 = 1

s
3

 = 1.8

s
2

 = 1.6



Challenge: 

Scores requiring relation mapping are much more expensive to compute

Top-K Search: Threshold Algorithm

M
1

Score

T
1

1

T
2

0.8

T
3

0.5

T
4

0.3

T
5

0.1

M
2

Score

T
2

0.8

T
3

0.7

T
1

0.3

T
4

0.2

T
5

0.1

M
3

Score

T
4

0.8

T
3

0.6

T
1

0.2

T
5

0.1

T
2

0

t = 0.5 + 0.3 + 0.2 = 1

s
3

 = 1.8

s
2

 = 1.6

e.g. To calculate Row Overlap, we need to know how the table headers map to each other



Computational Challenges

● Relation mappings are expensive
○ For two tables with size (R x C), computing table overlaps: O(RC2)

● Top-k search makes it worse
○ For N tables, top-k search: O(NRC2)



Example: Assume M
4

 is much more expensive to compute than M
1

, M
2

, and M
3

.

Top-K Search: Juneau’s Threshold Algorithm

M
1

Score

T
1

1

T
2

0.8

T
3

0.5

T
4

0.3

T
5

0.1

M
2

Score

T
2

0.8

T
3

0.7

T
1

0.3

T
4

0.2

T
5

0.1

M
3

Score

T
4

0.8

T
3

0.6

T
1

0.2

T
5

0.1

T
2

0

M
4

Score



Example: Assume M
4

 is much more expensive to compute than M
1

, M
2

, and M
3

.

Top-K Search: Juneau’s Threshold Algorithm

M
1

Score

T
1

1

T
2

0.8

T
3

0.5

T
4

0.3

T
5

0.1

M
2

Score

T
2

0.8

T
3

0.7

T
1

0.3

T
4

0.2

T
5

0.1

M
3

Score

T
4

0.8

T
3

0.6

T
1

0.2

T
5

0.1

T
2

0

M
4

Score

Instead of pre-compute all 

scores for M
4

, 

we do it on-demand



Trick: In each sequential scan, use the Upper Bound of M
4

 instead of the individual M
4

 scores.

Top-K Search: Juneau’s Threshold Algorithm

M
1

Score

T
1

1

T
2

0.8

T
3

0.5

T
4

0.3

T
5

0.1

M
2

Score

T
2

0.8

T
3

0.7

T
1

0.3

T
4

0.2

T
5

0.1

M
3

Score

T
4

0.8

T
3

0.6

T
1

0.2

T
5

0.1

T
2

0

M
4

Score

UB 0.9 t = 0.1 + 0.8 + 0.8 + UB = 3.5



Trick: Calculate individual M
4

 scores on-demand when covered by the scan

Top-K Search: Juneau’s Threshold Algorithm

M
1

Score

T
1

1

T
2

0.8

T
3

0.5

T
4

0.3

T
5

0.1

M
2

Score

T
2

0.8

T
3

0.7

T
1

0.3

T
4

0.2

T
5

0.1

M
3

Score

T
4

0.8

T
3

0.6

T
1

0.2

T
5

0.1

T
2

0

M
4

Score

UB 0.9

T
1

0.6

T
2

0.5

T
4

0.3

t = 0.1 + 0.8 + 0.8 + UB = 3.5

s
1

 = 1 + 0.3 + 0.2 + 0.6 = 2.1

s
2

 = 0.8 + 0.8 + 0 + 0.5 = 2.1

s
4

 = 0.3 + 0.2 + 0.8 + 0.3 = 1.6



Speeding up relation mapping

1. Data Profiles

2. Compositional Profile

3. Workflow Graph

Matcher: 𝑓
name

Neighbors: 
Sex, Age, … 

Value Space:
Rintamaki… 

Matcher: 𝑓
sex

Neighbors: 
Name, Age, … 

Value Space:
male, female, … 

Matcher: 𝑓
age

Neighbors: 
Name, Sex, … 

Value Space:
[1, 120]



Speeding up relation mapping

1. Data Profiles

2. Compositional Profile

3. Workflow Graph

Matcher: 𝑓
name

Neighbors: 
Sex, Age, … 

Value Space:
Rintamaki… 

Matcher: 𝑓
sex

Neighbors: 
Name, Age, … 

Value Space:
male, female, … 

Matcher: 𝑓
age

Neighbors: 
Name, Sex, … 

Value Space:
[1, 120]

Matcher tests whether a column 
belong to the domain



Speeding up relation mapping

1. Data Profiles

2. Compositional Profile

3. Workflow Graph

Matcher: 𝑓
name

Neighbors: 
Sex, Age, … 

Value Space:
Rintamaki… 

Matcher: 𝑓
sex

Neighbors: 
Name, Age, … 

Value Space:
male, female, … 

Matcher: 𝑓
age

Neighbors: 
Name, Sex, … 

Value Space:
[1, 120]

Index columns by data profiles



Speeding up relation mapping

1. Data Profiles

2. Compositional Profile

3. Workflow Graph

Matcher: 𝑓
name

Neighbors: 
Sex, Age, … 

Value Space:
Rintamaki… 

Matcher: 𝑓
sex

Neighbors: 
Name, Age, … 

Value Space:
male, female, … 

Matcher: 𝑓
age

Neighbors: 
Name, Sex, … 

Value Space:
[1, 120]

Index columns by data profiles

Match columns to data profiles



Speeding up relation mapping

1. Data Profiles

2. Compositional Profile

3. Workflow Graph

Matcher: 𝑓
name

Neighbors: 
Sex, Age, … 

Value Space:
Rintamaki… 

Matcher: 𝑓
sex

Neighbors: 
Name, Age, … 

Value Space:
male, female, … 

Matcher: 𝑓
age

Neighbors: 
Name, Sex, … 

Value Space:
[1, 120]

Data Profile Indices

Name, Sex, Age

Sex, AgeName, AgeName, Sex

Name Sex Age



Speeding up relation mapping

1. Data Profiles

2. Compositional Profile

3. Workflow Graph

BirthDate

1877/09/01

1892/10/23

1886/03/15

Index column sets based on 
common co-occurrences

BirthDate

1877/09/01

1892/10/23

1886/03/15

Compositional Profile Index



Speeding up relation mapping

1. Data Profiles

2. Compositional Profile

3. Workflow Graph

BirthDate

1877/09/01

1892/10/23

1886/03/15

BirthDate

1877/09/01

1892/10/23

1886/03/15

Compositional Profile Index

If a column pair matches (Name), 



Speeding up relation mapping

1. Data Profiles

2. Compositional Profile

3. Workflow Graph

BirthDate

1877/09/01

1892/10/23

1886/03/15

BirthDate

1877/09/01

1892/10/23

1886/03/15

Compositional Profile Index

If a column pair matches (Name), 
check if other columns (BirthDate) 
in the compositional profile also match.



Speeding up relation mapping

1. Data Profiles

2. Compositional Profile

3. Workflow Graph

source_1.csv

df_join

df_1

df_2

df_fillna

source_2.csv

pd.read_csv

pd.read_csv

pd.concatpd.concat

fillna

df_fillna_rename

rename



Speeding up relation mapping

1. Data Profiles

2. Compositional Profile

3. Workflow Graph

source_1.csv

df_join

df_1

df_2

df_fillna

source_2.csv

pd.read_csv

pd.read_csv

pd.concatpd.concat

fillna

df_fillna_rename

rename



Speeding up relation mapping

1. Data Profiles

2. Compositional Profile

3. Workflow Graph

source_1.csv

df_join

df_1

df_2

df_fillna

source_2.csv

pd.read_csv

pd.read_csv

pd.concatpd.concat

fillna

df_fillna_rename

rename

same source



System Implementation
Notebook

Cell

Cell

Use Case Relationess 
Function

c
1

Rel
1

… …

1. query(T, c)

Searching Framework
(Juneau)

Data Lake
2. (T, Rel

1
)

3. Return k most related tables

Search related tables for 
table T with use case c



System Implementation
Notebook

Cell

Cell

Use 
Case

Relationess 
Function

c
1

Rel
1

… …

1. query(T, c)

Data Lake

2. (T, Rel
1

)

3. Return k most related tables

Search related tables for 
table T with use case c

Data Profiles
Append or Create New

Database
(Index)

(& compositional index)

Workflow/Provenance
Graph

Indexer

Top-K Searcher

Data 
Profiles

Compositional 
Profile Indices

Workflow 
Graph

Value-Based 
Overlap

Threshold 
Algorithm

Juneau

(on demand relation mapping)



Experiment Setup

● 5000+ indexed tables

● 102 notebooks from Kaggle, hand-labeled for use cases

● 14 different Kaggle tasks



Experimental Evaluation: Search Efficiency

L64 = 

TA =

 

TA+P =

 

SJ = 

LSH Ensemble

(Ours) Threshold Algorithm

(without Data Profiles and Indices)

(Ours) Threshold Algorithm 

(with Data Profiles and Indices)

(Ours) Full Juneau



Experimental Evaluation: Search Efficiency

L64 = 

TA =

 

TA+P =

 

SJ = 

LSH Ensemble

(Ours) Threshold Algorithm

(without Data Profiles and Indices)

(Ours) Threshold Algorithm 

(with Data Profiles and Indices)

(Ours) Full Juneau

> 2300 seconds



Experimental Evaluation: Search Efficiency

L64 = 

TA =

 

TA+P =

 

SJ = 

LSH Ensemble

(Ours) Threshold Algorithm

(without Data Profiles and Indices)

(Ours) Threshold Algorithm 

(with Data Profiles and Indices)

(Ours) Full Juneau

Adding data profiles and indices speeds up the 
search by 100x.



Experimental Evaluation: Search Efficiency

L64 = 

TA =

 

TA+P =

 

SJ = 

LSH Ensemble

(Ours) Threshold Algorithm

(without Data Profiles and Indices)

(Ours) Threshold Algorithm 

(with Data Profiles and Indices)

(Ours) Full Juneau

Including workflow indices further decreases the 
compute time by 3-5x.



Experimental Evaluation: Search Efficiency

L64 = 

TA =

 

TA+P =

 

SJ = 

LSH Ensemble

(Ours) Threshold Algorithm

(without Data Profiles and Indices)

(Ours) Threshold Algorithm 

(with Data Profiles and Indices)

(Ours) Full Juneau

Juneau is multiple orders of magnitude faster 
than the baseline LSH ensemble.



Experimental Evaluation: Search Result Quality

How do we measure the result quality?

● Data Augmentation 
○ Precision of classifier trained on augmented data 

● Feature Extraction
○ Precision of classifier trained on extracted features

● Data Cleaning
○ Precision of classifier trained on cleaned data

● Linkable Data
○ Check if the returned table R is joined with T

(T is some table joined with the query table S in the original notebook workflow)



Experimental Evaluation: Search Result Quality

NB = 

KS = 

L64 = 

PS = 

PS + J = 

full SJ = 

Original performance in the notebook

Keyword Search

LSH Ensemble

(Ours) Row/Column Similarity Only

(Ours) R/C Sim. + Provenance Sim.

(Ours) Full Juneau



Experimental Evaluation: Search Result Quality

NB = 

KS = 

L64 = 

PS = 

PS + J = 

full SJ = 

Original performance in the notebook

Keyword Search

LSH Ensemble

(Ours) Row/Column Similarity Only

(Ours) R/C Sim. + Provenance Sim.

(Ours) Full Juneau

1. Data Augmentation: Significantly better than 
the baseline and other strategies



Experimental Evaluation: Search Result Quality

NB = 

KS = 

L64 = 

PS = 

PS + J = 

full SJ = 

Original performance in the notebook

Keyword Search

LSH Ensemble

(Ours) Row/Column Similarity Only

(Ours) R/C Sim. + Provenance Sim.

(Ours) Full Juneau

1. Data Augmentation: Significantly better than 
the baseline and other strategies

2. Feature Extraction: Slightly improved results



Experimental Evaluation: Search Result Quality

NB = 

KS = 

L64 = 

PS = 

PS + J = 

full SJ = 

Original performance in the notebook

Keyword Search

LSH Ensemble

(Ours) Row/Column Similarity Only

(Ours) R/C Sim. + Provenance Sim.

(Ours) Full Juneau

1. Data Augmentation: Significantly better than 
the baseline and other strategies

2. Feature Extraction: Slightly improved results

3. Data Cleaning: Measurable but minor impacts



Experimental Evaluation: Search Result Quality

NB = 

KS = 

L64 = 

PS = 

PS + J = 

full SJ = 

Original performance in the notebook

Keyword Search

LSH Ensemble

(Ours) Row/Column Similarity Only

(Ours) R/C Sim. + Provenance Sim.

(Ours) Full Juneau

1. Data Augmentation: Significantly better than 
the baseline and other strategies

2. Feature Extraction: Slightly improved results

3. Data Cleaning: Measurable but minor impacts

4. Linkable Data: Provides meaningful tables



Conclusions & Future Work

We contributed to the reusability and modularity for data processing through

1. Building a query-by-table framework for data lakes

2. Developing basic measures for table relatenesses and specialized compositional 

measures for 4 main use cases.

3. Developing algorithmic and indexing strategies for efficient top-k search

4. Showing promising scalability and quality for the search

Next Steps: scaling to distributed settings + heterogeneous data types



Demo



Demo



Demo



Finding Related Tables in Data Lakes for Interactive Data 
Science

From the archaeologist’s perspective

Yanhao Wang



The problem space: Data Lake Systems

Hai, Rihan, Christoph Quix, and Matthias Jarke. "Data lake concept and systems: a survey." arXiv preprint arXiv:2106.09592 (2021).

schema-on-use



The problem space: Related Dataset Discovery



JOSIE [Zhu, 2019]

● Problem: Joinable Table Discovery

○ Given (T, C), return top-K tables that can be joined with T on C

● Focus on data-value overlap

● New perspective: Consider the table columns as sets, and same tuple values as the set 

intersection, and formalize the problem as overlap set similarity problem.

● Apply existing overlap set similarity search techniques in data lakes, resolving the unique problems 

in this scenario:

○ Large number of tables in a massive data lake

○ Hard to decide the threshold for the intersection size threshold

Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J Miller. 2019. JOSIE: Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In Proceedings of the 2019 International Conference on 
Management of Data. ACM, 847–864.



Aurum [Fernandez, 2018]

● Problem: Joinable Table Discovery

● Indexing using data profiles and sketches

● Use hypergraphs to find similar datasets, where nodes are columns

○ Profiles each column with a signature f(card., data distr., min-hash, …)

○ Index signatures in Locality-Sensitive Hashing (LSH)

○ Assign a weighted edge between two column (nodes) if their index fall into the same bucket, 

with the similarity value as the edge weight

○ Construct hyperedges based on these weighted edges

●  Fast and robust against data value changes

Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel Madden, and Michael Stonebraker. 2018. Aurum: A data discovery system. In 2018 IEEE 34th International Conference on Data Engineering 
(ICDE). IEEE, 1001–1012.

hash functions with high collision probability for similar inputs
E.g. MinHash, random projections, etc. 



D3L [Bogatu, 2020]

● Problem: Related Table Discovery

○ Given T, return top-K tables that contain relevant attributes for populating T

● Extended types of similarity computed at schema- and instance-level

○ Representation patterns of instance values

○ Semantics of textual attributes

○ Data distribution for numerical values

● Map these features (after LSH) to a 5-d Euclidean space for calculating relatedness

A. Bogatu, A. A. A. Fernandes, N. W. Paton, and N. Konstantinou. Dataset Discovery in Data Lakes. In ICDE, pages 709–720. IEEE, 2020


Juneau [Zhang, 2020]

● Problem: (Task-specific) Related Table Discovery

○ Given (T, τ), return top-K tables that are most relevant to T in terms of search type τ

● Additionally consider the context (table provenance) and intent (task) of the user

● Further extended the notion of relatedness, on top of the often-used value overlap and attribute overlap:

○ New attribute/instance rate

○ Provenance similarity

○ Description similarity

● Introduced workflow graph & variable dependency graph as auxiliary structures to support provenance 

similarity computation

● Proposed a practical framework to integrate a subset of relatedness metrics to address different data 

science tasks

Zhang, Yi, and Zachary G. Ives. "Finding related tables in data lakes for interactive data science." Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 2020.



Systems Target Problem Relatedness Criteria Similarity metrics Auxiliary structure

Aurum Joinable Table 
Discovery

Instance value overlap 
Attribute name 
Primary-key/foreign-key candidate

Jaccard similarity 
(MinHash) 
Cosine similarity 
(TF-IDF)

Hypergraph

JOSIE Joinable Table 
Discovery Instance value overlap Intersection size of 

sets Inverted Index

D3L Related Table Discovery

Instance value overlap 
Attribute name 
Semantics 
Data value representation pattern 
(Numerical) data distribution

Jaccard similarity 
(MinHash) 
Cosine similarity 
(Random 
projections)

5–dimensional 
Euclidean space

Juneau (Task-specific) Related 
Table Discovery

Instance value overlap 
Domain overlap 
Attribute name 
Key constraint 
New attributes rate 
New instance rate 
Variable dependency 
Descriptive metadata 
Null Values

Jaccard similarity
Workflow graph 
Variable dependency 
graph

Hai, Rihan, Christoph Quix, and Matthias Jarke. "Data lake concept and systems: a survey." arXiv preprint arXiv:2106.09592 (2021).



The problem space: Related Dataset Discovery



Edmint [Amsterdamer, 2022]

● Problem: Given a dataset T, automatically select multiple datasets for extension

○ The value of each potential dataset is dependent on the choice of other datasets

● One important metric is still relatedness, and the author uses the relatedness metrics proposed by 

[Zhang, 2020] to integrate relatedness from different dimensions

● Not only consider the relatedness from the search table, but also balancing:

○ The integration gain: number of acquired table cells that are truthful and correctly integrated

○ The integration cost: decrease in quality, increase of incompleteness

Amsterdamer, Y., & Cohen, M. (2021). Automated Selection of Multiple Datasets for Extension by Integration. Proceedings of the 30th ACM International Conference on Information & Knowledge Management.



Finding Related Tables 
in Data Lakes for 
Interactive Data Science 
Reviewer Role : Vishnu K Krishnan



Paper Summary

• What is the paper about? –
• Developed framework Juneau to support search for semantically related tables.

• Focused towards data science use-cases – cleaning, augmenting, etc.

• What does it solve? –
• It works to aid data scientists through promotion of reuse of data/workflows, consistency 

in processing and reduce redundant and inefficient work. 

• How It functions? -
• Usage of top-k, pruning and approximation strategies to return the most relatable tables



Strong Points 

• Identified the bottleneck while doing top-k search – relational mapping and 
pruned the candidate tables effectively to Improve the top-k performance.

• Threshold algorithm’s on the fly calculation to save on precomputation costs.
• Novel method of profiling tables using various overlapping methods and 

definitions. Provided clear formal definitions.
• Proposed workaround for the NP-hard subset selection problem by limiting a 

variable to a small integer.( choosing key mapping to ensure maximum 
overlap – small key mapping size allows limit) 

• Usage of Data profiles, compositional profiles and workflow graphs to speed 
up computation.

• Utilized Workflow graphs as directed bi-partite graphs for Juneau 
computational notebook software. Computational notebook platforms 
directly capture workflows and data exploration by interleaving source code 
cells with their outputs.



Opportunities of Improvement

• More representations, more data points and performance figures could have 
been provided.

• Can it be used in the industry?  Privacy issues – for example, if this were to be 
utilized by industry practitioners where some data could be considered 
confidential, can the current solution be augmented to ensure privacy of the 
data?

• Trade-off precision for speed using approximation in the threshold algorithm. 
( early stop used )



Verdict?

Accept



Data Lake vs Data Warehouse 
Data lake:

raw data, can be unstructured
low-cost storage, but no transactions, data quality checks
data scientists and engineers

Data warehouse:
structured data (schema-on-write)
expensive for large data volumes
managers and business analysts

5



“Lakehouse”

Source: Lakehouse: A New Generation of Open Platforms that Unify Data Warehousing and Advanced 
Analytics 6

https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf


Contribution/Strengths
Novel problem formulation driven by use cases
• Query by table framework - they hypothesized that interactive DS 

users search on data lake not only by keyword but also by table. 
• More prior work on table search focus on the web
• Despite the difference, the searching for all four tasks can be captured 

under a general framework and solved by Juneau. This application-
driven reformulation of the table searching problem is novel and 
inspiring. 
• The authors exploited the characteristics of different use cases (e.g., data 

augmentation vs feature extraction) to establish measures that capture the 
relatedness of tables. 

7



Contribution/Strengths
Implementation and evaluation
• Integrated with Jupyter Notebook (among others) - makes adoption 

easy
• It leverages multiple indices to perform staged relation mapping 

detection to speed up the topk search: data profile index on columns, 
compositional profile index on co-occurring sets of columns, and 
workflow graph index.
• Juneau evaluates the results on objective measures, for example, the 

precision of the classifier on the original table vs the precision on the 
table returned by Juneau. 
• Evaluated using real data science workflows from kaggle.com.

8



Limitation/Weaknesses
Lack of user perception
• Given that targeted usage scenarios are the highlight of the table 

relatedness measure (thus usefulness of the result), testing out if users 
actually define related tables in the same way as the relatedness 
measure is crucial
• No qualitative measures with data scientists - How do actual data 

scientists interpret the search results? Do they feel comfortable 
integrating search results into their data pipelines? Are there times 
that they like the results but they don’t perform well, and vice 
versa?

9



Limitation/Weaknesses
Unclear generalization
• All the metrics and searching methods are specifically designed 

for these mappings, it remains unclear how easy the proposed 
system generalizes to new settings.
• So, the query is based on a table and a specific task at hand, 

what if I wish to perform task 1 followed by task 3 maybe the 
query can combine two tasks and return the best-suited table for 
this.
• Assumption that cells in a notebook are in sequence is too 

optimistic. Notebooks are designed for random and unstructured 
runs, so assuming the order is a big assumption.

10



Limitation/Weaknesses
Weak baseline
• In the experiments, only a brute-force baseline is compared for 

efficiency. There is no state-of-the-art solution for finding similar 
joinable or unionable tables
• The experiments section does not sufficiently compare against other 

works - the authors mention several related approaches like Google 
Dataset search, q system, etc. 
• The experiments do not conclusively show that Juneau is superior to 

keywork search. Although Juneau has slightly higher accuracy, its 
query times are much longer than keyword search. 
• The corpus used in the evaluation consists of data ~5GB. This is pretty 

small in comparison to the sizes of data stored on data lakes in the real 
world, which might make the results biased. 

11



Limitation/Weaknesses
Data quality issues
• Sometimes people leave trails of abandoned methods that are just not 

correct, outdated, or contain bugs. Storing and indexing these seems 
wasteful, and can also lead to poor/misleading search results.
• I wonder how they have handled different versions of the data - are all 

available or just the latest one?
• Data cleaning and augmentation can be quite task specific, but the 

search doesn’t explicitly encode the task, and incorrect methods can 
slip in.

12



Next class

13

Auto-Suggest: Learning-to-Recommend Data Preparation Steps 
Using Data Science Notebooks

Author: Bojun, Siddhi
Reviewer: Shubham, Shen En
Archaeologist: Aniruddha
Practioner: Jingfan
Researcher: Ting

https://dl.acm.org/doi/pdf/10.1145/3318464.3389738

