
CS 8803-MDS
Human-in-the-loop Data
Analytics
Lecture 11
09/28/22

1

Today’s class

Benchmarking Spreadsheet Systems
Author: Abhinav, Harshal
Reviewer: Qiandong
Archaeologist: Cuong
Practioner: Ting

2

https://people.eecs.berkeley.edu/~adityagp/papers/spreadsheet_bench.pdf

3

• Unfortunately, originality of colors doesn’t help

• Basic Complexity Testing (BCT)
• Test basic operations

• Opening

• Structuring

• Editing

• Analyzing data

• Goal is to understand the impact of
• Type of operation

• Size of data

• Measure when the systems become dangerous for interactive workload

• Optimization Opportunities Testing (OOT)
• Learn about whether spreadsheet developers use latest academic research

• Create indexes

• Incremental updates

• Workload aware data layout

• Sharing of computation

• Goal is to identify new opportunities for improving the design to support
computation on large datasets and ofc save lives

• Addressing Interaction effects
• Problem: Any change on the spreadsheet will lead to additional formulae re-

computation

• Solution: We operate on real-world datasets containing both formulae and raw data,
as well as datasets with raw data only.

• Addressing Human errors
• Problem: Human error and maintain repeatability

• Solution: VBA (VB for Apps) for Excel, Calc Basic for Calc, GAS (Google Apps Script)

• Coverage
• BCT: Classified operations into 7 classes based on complexity & type of input

• OOT: We relied on our creativity to find settings where ∃ DB-like optimizations

1. A spreadsheet on weather data across the states in US, containing
50000 rows and 17 columns

2. Cells within seven of those columns contained COUNTIF formulae
which

- will output 0 or 1 depending on the previous column and same
row cell

Type isStorm? isEarthquake?

Storm 1 0

Earthquake 0 1

3. Using this dataset as the starting point, we create:

Uniform
sampling

•Do current spreadsheet use standard database
optimizations?
• Indexing?
• Columnar data layout?
• Shared computation?
• Eliminating redundant computation?
• Incremental updates?

• COUNTIF(Where do you want to look?, What do you want to look for?)
• How many cells in a column contain 1?

• If there was an index on this column, this would have been near constant time.

• But all three spreadsheets took linear time!

• VLOOKUP(what to look for?, where?, which column to output, approx?)
• Query such that a linear scan would go through 200k rows

• If there was an index, O(logn)

• But all three spreadsheets took linear time*

• Find and replace
• Inverted index?

• A mapping between content -> location

Source: https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html

https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html

Source: https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html

https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html

Spreadsheet systems do not employ a columnar data layout to
improve computational (e.g., aggregation) performance!

The systems were not able to detect sharing opportunities and use them to
reduce computation!

• What if we made it easier to share results?

• Inserted five instances of the EXACT same formula

• This took 5x longer than when we inserted a single formula.

• COUNTIF(J1:Jm, 1)

• COUNTIF(J0:Jm, 1)

• Should be done in constant time if we support incremental updates.

• Indexing and data layout

• Shared computation

• Incremental updates

• Detecting what to recompute

Benchmarking Spreadsheet Systems

Practitioner / Ting Yu

Basic operations to improve - Yes or No

Operation How Y/N Cost

Load Load data on demand according to viewport. YES Dev Hour.

Find and Replace

Determine if formulae need recomputation. YES Dev Hour.

Sort

Conditional Formatting

Should not update formulae. Store formulae

results.

Whether to store formulae results depends on

formulae quantity relative to the sheet size as

well as the amount of data manipulation.

Either the system automatically makes a

decision or hand the decision to users.

MAYBE

Storage cost either to users or

to cloud providers.

Filter

Aggregate

Pivot Table

Optimizations to implement - Yes or No

Optimization How Y/N Cost

Indexing Inverted indexing for Find-and-Replace.

Column indexing on all columns for Countif

and Vlookup. But costly for storage. Extra costly

given frequent data manipulations.

MAYBE Indexing construction

time. Storage cost. Only

worthwhile

In Memory Layout Columnar layout. Cache locality. YES Dev hour.

Shared Computation Reuse formula subexpression in bulk

computation. Might be caused by formula result

not stored. But in one single batch operation,

formula results should be cached..

YES Dev hour.

Redundant Computation Difficult to search for exactly formula. Not a

real-world scenario.

NO

Incremental Update Same problem with formulae results storage. NO

Takeaway

Design perspective:

For basic operations, most problems involve the central design choice on formula: no storage on
materialized formula results. This is a trade-off between cost of storage and performance.

To make a decision for the trade-off, understanding user context and scenario is critical. This can
be automatically inferred or decided by the user.

Product perspective:

With mature product like spreadsheets, performance improvement is not critical to drive revenue,
especially given most of the spreadsheets users deal with relatively small data and spreadsheets
are sold as a office suite at an enterprise level.

There is a potential for spreadsheets to take market share of DBMS-based analysis scenarios if
they can handle more data.

Thoughts on database-like spreadsheets

DBaaS, such as, Airtable… Such products work like a spreadsheets but are
probably implemented similar to a database. They are web-based, full of APIs for
best SaaS integration. But their goal is to help with workflow management.

Benchmarking Spreadsheet Systems

An Archeologist Perspective by: Cuong (Johnny) Nguyen

Paper Summary
- The paper wanted to benchmark

spreadsheet systems for a variety of
operations and workloads

- Came up with two benchmarks: Basic
Complexity Testing (BCT) and
Optimization Opportunities Testing
(OOT)

- Found that all spreadsheets systems
are only interactive for small datasets,
one reason being they do not apply
database-style optimizations

The Inspiration:

A Comparison of Approaches to Large-Scale Data Analysis by Pavlo et al.
(2009)

- Cited by the paper as a good benchmarking paper in applying databases
to large-scale data analytics, necessary to measure process + compare
and contrast

- Found that while Hadoop does better than parallel DBMS in loading data,
it is significantly slowing than parallel DBMS such as search, select,
aggregate, join.

The Inspired

Efficient Specialized Spreadsheet Parsing for Data Science by Henze et al. (2022)

- Built off the paper’s finding that spreadsheets system is extremely inefficient in
data loading tasks, and that database-style optimizations should be applied to
boost performance

- Introduces spreadsheet-specific optimizations to significantly reduce the
runtime for loading massive spreadsheets by 2-3 times

Benchmarking
Spreadsheet System
Academic Researcher Role : Vishnu K Krishnan

Paper Summary

• This paper aims to design a benchmarking system specifically for
spreadsheets.

• The creation of 2 main benchmarks ensured wide coverage of
operations - basic complexity testing (BCT) and Optimization
opportunities testing (OOT).

• BCT - is used to test the limits of the spreadsheet based on normal
operating conditions through the use of representative operators.

• OOT – is used to tests indexing-based optimization using querying
operations like aggregate, report and lookup.

• First of its kind - present a benchmarking study for spreadsheets and
compared performance of 3 popular spreadsheet systems.

Open Problems

• Lack of weightage for ease of use while measuring spreadsheets.

• Since there is not much previous work in benchmarking
spreadsheets, it is tough to judge whether or not the metrics and
values chosen are optimal.

Problems - Justification

• Spreadsheets are used commonly because of their relatively low skill
training requirements. Measuring them based on this is only
appropriate.

• A set of quantitative and qualitative guidelines set up can greatly help
people determine the true characteristics of a given spreadsheet
system.

Project Idea: Measure the Human in the spreadsheet

• Providing a model data-set and designing a set of questions or
problems for the participants to solve using spreadsheets.(Similar to
the user study conducted in the hillview paper.)
• This will get us the required quantitative data

• Conduct analysis on the data acquired to derive insights on the participants
performance.

• Designing a set of interview questions or guidelines for them, to
collect qualitative data on spreadsheets.
• Example – which spreadsheet took you the least amount of time and why?

What has been done so far

• HillView: conducted an effectiveness case study.
• Who ? - Uses operators familiar with Hillview for quantitative analysis – data

scientists(Does not validate ease of use for beginners)

• What ? - Designed set of problems to be solved targeting effective
information extraction from data.

• Why ? - To test functionality and usability of the product developed (HillView).

How to proceed

• Follow principles used in HillView to create problems for a generalized
effectiveness study targeted towards spreadsheets.

• Conduct the study on a range of participant – beginner and intermediate to
expert spreadsheet users.

• Incorporate qualitative data collection into benchmarking spreadsheet
systems.

• Design evaluation process for the data collected and present findings.

Thank you!

How are spreadsheets different from DBMS?

4

Classic DB assumption:
Data systems should manage data in relations that can only be accessed through
queries, that are unordered, and have a well-defined schema, with queries that
operate on relations as a whole and kept separate from the data.

Spreadsheet:
Data is ordered, and position is central
Data can be directly manipulated
Queries (Formula) are embedded as materialized views along with data
Data is ad-hoc and cell-structured, not relational

Direct manipulation [Shneiderman’83]
Direct manipulation interfaces have four properties:

Continuous representations of the objects and actions of interest
Physical actions instead of complex syntax
Continuous feedback and reversible, incremental actions
Rapid Learning

Examples of direct manipulation in real life:
driving a car via a steering wheel
dragging a document to the trash
inserting characters in a document by pointing to where they should go
(with a mouse/cursor/insertion point) and then typing

5

Making an analogy
Build on user’s existing experiences and intuitions to aid learning

6

Direct manipulation [Shneiderman’83]
Direct manipulation interfaces have four properties:

Continuous representations of the objects and actions of interest
Physical actions instead of complex syntax
Continuous feedback and reversible, incremental actions
Rapid Learning

Why are relational databases NOT direct manipulation interfaces?
What aspects of spreadsheets make them direct manipulation
interfaces?

7

Benefits of Direct Manipulation
• While interacting with DM interfaces, users feel as if they are

interacting with the domain rather than with the interface, so they
focus on the task rather than on the technology. There is a feeling
of direct involvement with a world of task objects rather than
communication with an intermediary.
• Users can see the effects of their actions, and can change them if

needed
• Users gain confidence and mastery because they are initiators of

actions, they feel in control, and system responses are predictable

8

Disadvantage of Direct Manipulation
Continuous representations of the objects of interest
Can only act on a small number of objects that can be seen

Physical actions instead of complex syntax
Risk of RSI (repetitive strain injury)

Continuous feedback and reversible, incremental actions
Only if you attempt an operation that the system lets you do

Rapid Learning
Good for novice but repetitive tasks are not well supported

9

Contribution/Strengths
• First benchmark study of spreadsheet systems (It even does not

have a Related Works section)
• Creative ways of probing the spreadsheet system
• Lots of very simple improvements can probably be made to the

current spreadsheet systems. This paper opened up the scope
for a lot of ideas.

10

Limitation/Weaknesses
• OOT benchmarking biases towards database solutions – It seems

that the paper is suggesting more database style solutions with
their benchmarking
• Desktop spreadsheet systems (Excel and Calc) and web-based

spreadsheet systems (Google Sheets, Excel Online) are two quite
different categories.
• Choice of spreadsheet systems: outdated versions, 2 closed

sourced systems that need approximation

11

Limitation/Weaknesses
• .csv files might have different performances compared to .xls,

.xlsx and .ods files (the software specific files)
• do not consider how collaborative editing affects Google Sheet
• The study does not talk about any software usage data. Maybe

most users of Excel do not go above 10k rows, and if they don't
what is the pain point for them at, say, 5k rows?
• Only one dataset (which was scaled up and down) was used for

the entire study.

12

Limitation/Weaknesses
• Unclear how easy/difficult it is for future researchers to test

black-box spreadsheet systems using the developed
benchmark system
• Measure the performance of DBMS-backed spreadsheets (like

Hillview).
• For the data load operation, the authors say 500ms is the

interactivity expectation, although that seems like a pretty hard
constraint for a one-time operation like data load.

13

Next class

14

Finding Related Tables in Data Lakes for Interactive Data Science
Author: Qiandong, Shen En
Reviewer: Vishnu
Archaeologist: Yanhao
Practioner: Haotian

https://www.cis.upenn.edu/~zives/research/Finding_Related_Tables_in_Data_Lakes_for_Interactive_Data_Science.pdf

